Посвящение в радиоэлектронику - Владимир Поляков
Шрифт:
Интервал:
Закладка:
Изменилось отношение к радиолюбителям и со стороны государственных органов. Об этом свидетельствуют официальные обращения к радиолюбителям с просьбами и предложениями о совместных экспериментах в области распространения коротких волн. Радиолюбителям выдаются специальные диапазоны частот для их экспериментов. А ионосфера продолжает преподносить все новые и новые сюрпризы. Днем связь есть, ночью ее нет, или наоборот… Да что там день или ночь — в течение нескольких часов условия прохождения КВ могут резко изменяться без всяких видимых причин. Необходимы обстоятельные исследования. И такие исследования проводятся — и теоретические, и экспериментальные.
Давайте вкратце познакомимся и с теми и с другими.
Теоретики рассчитали показатель преломления ионосферы для радиоволн — он получился меньше единицы. Напомним, что показатель преломления в вакууме равен единице, а для обычных сред он больше единицы. Кроме того, показатель преломления ионосферы оказался сильно зависящим от частоты колебаний электромагнитной волны — чем больше частота, тем он ближе к единице. Как известно, волны всегда преломляются в сторону среды с большим показателем преломления. Следовательно, и радиоволна, попадая из стратосферы в ионосферу, преломляется и направляется обратно к поверхности Земли.
Способность ионосферы отражать, а точнее говоря, преломлять радиоволны зависит и от угла падения волны на ионизированный слой. Если радиолуч послать вертикально вверх, то он может вернуться обратно, а может, пронизав ионосферу, безвозвратно исчезнуть в просторах космоса. Все зависит от частоты электромагнитных колебаний: если она ниже некоторой критической частоты, то луч возвращается, если выше — то нет. Ученые показали, что критическая частота зависит только от концентрации электронов в слое. Но критическую частоту можно измерять экспериментально, посылая к ионосфере радиосигналы. Таким образом, мы получаем новое средство исследования верхних слоев атмосферы, в частности средство для определения концентрации в них заряженных частиц.
Радиолуч, посланный наклонно, отражается ионосферой лучше. Касательные к горизонту лучи обеспечивают наибольшую дальность связи. Частота колебаний касательного луча, еще отражающегося от ионосферы, выше критической частоты в три-пять раз. Она называется максимальной применимой частотой или, сокращенно, МПЧ. Волны с частотами выше МПЧ, посланные с поверхности Земли, уже ни при каких условиях не могут вернуться обратно на Землю — недостаточно преломляясь в ионосфере, они уходят в космос.
Пути распространения радиоволн.
Пути радиоволн в ионосфере.
Максимально применимую частоту можно рассчитать, зная критическую частоту и высоту слоя.
Теоретики сказали свое слово — дело за инженерами. Для каждого слоя ионосферы желательно знать два параметра — критическую частоту и высоту над поверхностью Земли. Они очень изменчивы и зависят от времени суток, сезона, географического положения места, где производятся измерения, и от многих других причин, не все из которых и к настоящему времени достаточно хорошо изучены.
Первый эксперимент Г. Брейта и М. Туве по активному зондированию ионосферы не забыли — сейчас во всем мире постоянно действуют сотни ионосферных станций, представляющих собой КВ радиолокаторы, «стреляющие» короткими импульсами радиоволн вертикально вверх. Отраженные импульсы принимаются и регистрируются на экране электронно-лучевой трубки (подробнее о ней будет рассказано в гл. 7). Одновременно изменяется частота излучаемых импульсов. Станция устроена так, что на экране регистрируются отраженные сигналы в координатах частота-высота. Полученный график называется ионосферной характеристикой или ионограммой. По нему можно сразу определить и высоты каждого из слоев, и их критические частоты. На рисунке показаны типичные ионосферные характеристики, снятые в наших, средних широтах летом, когда Солнце высоко и интенсивность ионизации верхних слоев ионосферы велика, и зимой — при низком Солнце.
Ионосферные характеристики.
Как видим, критические частоты летом выше, чем зимой. Одна и та же причина — возросший уровень солнечной радиации вызывает летнее повышение температуры тропосферы и критических частот ионосферы.
В ионосфере своя «погода», и, как это не покажется удивительным, ее уже научились предсказывать! Институт земного магнетизма и распространения радиоволн АН СССР (ИЗМИРАН), расположенный под Москвой, публикует прогнозы, так и хочется сказать — погоды. Но не погоды, а прогнозы распространения коротких волн для всей территории Советского Союза на месяц вперед! Учесть надо многое, чтобы составить правильный прогноз. Не только время суток и года, но и фазу одиннадцатилетнего цикла солнечной активности, число пятен на Солнце, возмущения магнитного поля Земли и многое другое. Благодаря ионосферным прогнозам можно рекомендовать оптимальные частоты для радиосвязи в заданное время между любыми заданными пунктами.
Самый простой путь распространения волн, отраженных от ионосферы, — односкачковый. Дальность распространения при этом получается до 4000 км. Более сложный путь распространения — многоскачковый, когда волна несколько раз переотражается ионосферой, затем Землей, еще раз ионосферой, и т. д. Особенно малые потери мощности сигнала получаются при рикошетирующем распространении, когда радиоволны возвращаются на Землю, несколько раз переотразившись от ионосферы. Наиболее благоприятные условия для возникновения рикошетирующих волн возникают в утренние и вечерние часы, когда слои ионосферы наклонны к горизонту. Напомним, что на ночной стороне Земли высота слоев больше, чем на дневной.
Короткие волны могут распространяться на любые расстояния.
На КВ неоднократно наблюдали кругосветное эхо, когда сигнал, посланный с помощью направленной антенны на восток, приходит снова к месту расположения передатчика с запада. Время запаздывания кругосветного эхо составляет около 0,14 с. Полагают, что число отражений волны от ионосферы при кругосветном эхо достигает 12–14. Разговор о «чудесах» коротких волн можно продолжать долго. Вот, к примеру, любопытное явление: «зона молчания», или «мертвая зона». Пусть мы вылетели на самолете (или вышли на корабле, кому как нравится) из города, где работает КВ радиостанция, и во время пути прослушиваем ее работу. Сначала благодаря поверхностной волне мы ее хорошо слышим, но на расстоянии 150…200 км волна уже не способна преодолеть кривизну поверхности, и сигнал радиостанции пропадает. Терпеливо ждем (на корабле терпения нужно больше), и при расстоянии 1500…2000 км сигнал появляется снова! Вокруг радиостанции образовалось как бы кольцо «зоны молчания», где поверхностных волн уже нет, а волны, отраженные от ионосферы, еще не пришли.
Зона молчания.
Внимательный читатель отметит для себя, что «зона молчания» образуется лишь при работе передатчика на частоте выше критической, когда вертикальные лучи уже не отражаются ионосферой.
Как вы помните, МПЧ — это максимальная частота волны, еще отражающейся от ионосферы. Значит, на всех частотах ниже МПЧ возможна связь на дальних и сверхдальних трассах? Ничего подобного! С понижением частоты возрастает и поглощение радиоволн в ионосфере. Поэтому значительно понижать частоту тоже нельзя.
Ввели понятие наинизшей применимой частоты (НПЧ). Где-то между МПЧ и НПЧ лежит оптимальная для данной трассы частота, на которой только и гарантирована надежная связь. Например, в летний полдень значения МПЧ возрастают до 20…30 МГц. В этих условиях хорошо проходят волны, например, 13- и 16-метровых радиовещательных диапазонов — на них слышно много дальних станций. А в диапазонах 41 и 49 м можно принять лишь местные радиостанции, сигнал которых распространяется земной волной.
День клонится к вечеру, и «оживают» диапазоны 19, 25 и 31 м. А в диапазоне 13 м уже не слышно ни одной радиостанции! Ночью диапазоны 41 и 49 м буквально переполнены сигналами радиостанций, а на более коротковолновых (более высокочастотных) диапазонах все тихо, как в спящей квартире. Часто радисты используют даже термины «ночные волны» (длиннее 25 м) и «дневные волны» (короче 25 м). То же повторяется и при смене сезонов года: зимой лучше приходят болеё длинные волны.
Уровень сигнала удаленной радиостанции зависит не только от времени суток и года. В течение нескольких минут он может измениться в сотни раз. Происходят хорошо известные замирания сигнала, или фединги. Основная причина замираний — быстрых и сильных изменений уровня сигнала — интерференция нескольких волн, пришедших от передатчика к приемнику различными путями. Длины путей различны, поэтому различны и фазы пришедших сигналов. Когда волны синфазны, происходит их сложение, а когда противофазны — одна волна ослабляет другую и общая напряженность поля у приемной антенны уменьшается. Интерферировать могут волны, пришедшие одним и двумя скачками, отраженные от разных областей ионосферы, земная и пространственная волны.