Категории
Самые читаемые

Атомы и электроны - Матвей Бронштейн

Читать онлайн Атомы и электроны - Матвей Бронштейн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 22 23 24 25 26 27 28 29 30 ... 36
Перейти на страницу:

Что представляют собой эти лучи, которые как будто бы ничем не отличаются от лучей Рентгена?

В 1899 году Пьер и Мария Кюри- попробовали пропустить пучок лучей Беккереля через пространство, в котором было магнитное поле. Это они сделали для того, чтобы узнать, являются ли лучи Беккереля чем-то вроде лучей Рентгена (электромагнитными колебаниями, такими же, как лучи видимого света, но только с гораздо меньшей длиной волны) или же они скорее напоминают катодные лучи, т. е. представляют собой поток очень быстро движущихся, заряженных электричеством частичек.

Результат опыта был совсем неожиданным: в магнитном поле лучи Беккереля расщеплялись на две части! Одна из них изогнулась в магнитном поле - совершенно таким же образом, как искривляются катодные лучи, и при этом в ту же сторону, только величина искривления была в несколько раз меньше. Что отсюда следует? Отсюда следует, что эта часть лучей Беккереля несет на себе, как и катодные лучи, отрицательный электрический заряд. Поэтому можно было исследовать эти лучи совершенно тем же самым способом, каким Томсон исследовал катодные лучи, т. е. можно было определить для них отношение e/m и их скорость, наблюдая отклонение лучей в магнитном и в электрическом полях. Эту работу проделал немецкий физик Кауфман. Он нашел, что отношение e/m у этих лучей Беккереля такое же, как у электронов катодных лучей. Значит, эта (отклонившаяся в магнитном поле) часть лучей Беккереля есть не что иное, как поток электронов, вырывающихся, по-видимому, из атомов радиоактивных веществ. Что касается скоростей этих электронов, то они, как нашел Кауфман, были очень разнообразны, но в среднем они были гораздо больше, чем у электронов катодных лучей. Поэтому и отклонение в магнитном поле было у них не такое большое, как у катодных лучей: действительно, чем быстрее движется заряженная частица, тем труднее магнитному полю сбить ее, отклонить ее от первоначального пути.

Наиболее быстрые из электронов, выбрасываемых радиоактивными веществами, оказались движущимися почти со скоростью света (300000 км/с).

Итак, часть лучей Беккереля - это просто поток очень быстрых электронов.

Но кроме этой части была еще и другая часть. Она не отклонялась в магнитном поле и распространялась без всякого изменения направления.

Таков был результат опытов Кюри.

Но в 1903 году Резерфорд доказал, что та часть лучей Беккереля, которую Пьер и Мария Кюри не сумели отклонить в магнитном поле, тоже сложна и состоит из разных частей.

Рис. 12. Лучи, испускаемые радиоактивными веществами.

Для этого Резерфорд взял очень сильное магнитное поле, гораздо более сильное, чем то, которое было в распоряжении Кюри. В этом сильном магнитном поле та часть лучей Беккереля, которая в опытах Кюри не хотела искривляться, расщепилась на две части: одна из них изогнулась в магнитном поле, но не в ту сторону, в которую изгибается поток электронов, а в противоположную. Значит, это был поток заряженных частиц, но не электронов, а частиц, заряженных положительным электричеством. Другая же часть лучей по-прежнему продолжала распространяться прямолинейно, не обращая никакого внимания на магнитное поле.

Из этих опытов следует, что лучи Беккереля, испускаемые радием и другими радиоактивными веществами, не однородны, а состоят из трех видов лучей (рис. 12). Всем этим трем видам лучей физики дали названия, а именно обозначали их тремя первыми буквами греческого алфавита: альфа, бета и гамма (альфа, бета и гамма - это названия букв: ведь и у нас когда-то русские буквы имели названия, например, а, б и в назывались аз, буки, веди).

Альфа-лучами стали называться лучи, состоящие из потока положительно заряженных частиц,- те самые лучи, которые Резерфорду удалось отклонить магнитным полем от их" первоначального направления (в 1903 году).

Бета-лучами стали называться лучи, состоящие из потока очень быстрых отрицательных электронов, которые были отклонены магнитным полем еще в опытах Кюри (в 1899 году).

Наконец, гамма-лучами стали называться лучи, которые упорно не хотели изменять своего направления даже и в очень сильном магнитном поле.

Какие существуют еще различия между этими тремя сортами лучей, смесь которых образует лучи Беккереля?

Альфа-лучи гораздо труднее изогнуть в магнитном поле, чем бета-лучи (именно поэтому в первоначальных опытах Кюри удалось загнуть бета-лучи в сторону в таком магнитном поле, которое было еще совершенно недостаточным для того, чтобы заставить альфа-лучи изменить свое направление). Гамма же лучи не изгибаются

ни в магнитном, пи в электрическом поле вовсе, точь-в-точь как лучи Рентгена.

Альфа-лучи легко задерживаются и поглощаются даже сравнительно очень топкими слоями вещества. Например, достаточно завернуть радий в обыкновенную писчую бумагу или закрыть его листком слюды или алюминия толщиной в 0,05 мм, чтобы альфа-лучи почти полностью поглотились. А бета- и гамма-лучи проходят через такие листки совершенно свободно. Вообще можно считать, что проникающая способность бета-лучей примерно в 100 раз больше проникающей способности альфа-лучей, а проникающая способность гамма-лучей в десять или в сто раз превосходит проникающую способность бета-лучей. Слой в 5 мм алюминия или в 1 мм свинца достаточен, чтобы задержать большую часть бета-лучей, а гамма-лучи проходят через этот слой еще довольно свободно.

Из-за того, что альфа-лучи так легко поглощаются, возникает вот какое любопытное обстоятельство: если взять какой-нибудь препарат радия и придать ему форму шарика, то он будет испускать сравнительно немного альфа-лучей, потому что большая часть альфа-лучей, испускаемая внутренними слоями этого шарика, успеет поглотиться внутри шарика еще раньше, чем доберется до его поверхности. Поэтому наружу выйдет лишь очень малая доля всех испускаемых альфа-лучей. Но если взять тот же самый препарат и размазать его в виде очень тоненького слоя по какой-нибудь тарелочке или пластинке, то альфа-лучей будет очень много и их действие будет гораздо сильнее, чем действие бета- и гамма-лучей того же самого препарата. С помощью такого препарата можно обнаружить удивительные действия альфа-лучей.

Так, например, легко показать на опыте, что альфа-лучи гораздо сильнее ионизуют воздух, чем бета- и гамма-лучи. Содди доказал это следующим опытом. Он размазал 1 мг бромистого радия по поверхности платиновой тарелочки (около шести квадратных сантиметров). Затем он взял наэлектризованную шелковую кисточку. Эта кисточка служила как бы электрометром: когда клеточка наэлектризована, все ее нити отталкиваются друг от друга и расходятся в виде конуса, а как только кисточка разрядится, нити снова спадут и будут свисать вертикально. Когда Содди поднес свою наэлектризованную кисточку к размазанному но тарелочке бромистому радию, покрытому сверху листком почтовой бумаги, кисточка оставалась наэлектризованной и ее нити не хотели спадать. Но как только Содди передвинул листок бумаги и приоткрыл небольшую часть поверхности, смазанной бромистым радием, кисточка немедленно разрядилась и ее шелковые нити сейчас же повисли. Значит, бета- и гамма-лучи, испускаемые одним миллиграммом бромистого радия и проходящие сквозь листок бумаги, не действуют на заряженную кисточку, а альфа-лучи действуют очень сильно. Когда Содди поднес такую же заряженную шелковую кисточку к 30 мг бромистого радия, закрытого листком слюды для поглощения альфа-лучей, то кисточка сложилась, но все же не так быстро, как от действия альфа-лучей, испускаемых лишь одним миллиграммом бромистого радия. Выходит, что альфа-лучи одного миллиграмма бромистого радия ионизуют сильнее, чем бета- и гамма-лучи, и поглощаются так сильно, что их энергия очень быстро расходуется на ионизацию тех веществ, через которые они проходят.

Поглощение альфа-лучей в воздухе и в других веществах тщательно изучил У. Г. Брэгг (тот самый, который впоследствии вместе со своим сыном У. Л. Брэггом построил спектроскоп для рентгеновских лучей). Брэгг нашел, что альфа-лучи каждого радиоактивного вещества проходят в каждой данной среде путь совершенно определенной длины, после чего сразу останавливаются. Поэтому нужно говорить о совершенно определенной «длине пробега» данных альфа-лучей в данном веществе. Это понятно: положительная частица альфа-лучей, проходя, например, через воздух, все время ионизует молекулы воздуха, отрывая от них электроны. На ионизацию каждой молекулы она затрачивает определенное количество энергии. Поэтому после каждой ионизации энергия частицы уменьшается на какую-то величину. Наконец, когда весь ее запас энергии будет таким образом исчерпан, она остановится.

В одном из своих опытов Брэгт взял стеклянный шар радиусом 7,5 см и расположил в его центре пластинку с размазанным на ней препаратом радия. Стенки шара были изнутри вымазаны сернистым цинком - это вещество, которое обладает способностью флюоресцировать белым светом, когда на него падают альфа-лучи. Но самые быстрые альфа-лучи, испускаемые препаратом, проходят в воздухе при обыкновенном давлении только 7,1 см. Поэтому они останавливаются, не дойдя от центра шара до вымазанных сернистым цинком стенок, и никакого свечения нет. Но стоит только начать выкачивать из шара воздух - при первом же ходе поршня насоса стенки шара начинают светиться. Это значит, что, становясь более разреженным, воздух начинает лучше пропускать альфа-лучи, и их длина пробега, таким образом, увеличивается и достигает величины 7,5 см. Поэтому они успевают добежать до сернистого цинка и заставить его светиться. При дальнейшем откачивании воздуха свечение сернистого цинка становится все ярче и ярче; это показывает, что альфа-лучи, которые успевают добежать до сернистого цинка, растрачивают на ионизацию воздуха все меньшую и меньшую часть своей энергии.

1 ... 22 23 24 25 26 27 28 29 30 ... 36
Перейти на страницу:
На этой странице вы можете бесплатно скачать Атомы и электроны - Матвей Бронштейн торрент бесплатно.
Комментарии
Открыть боковую панель