Тёмная миссия. Секретная история NASA - Майкл Бара
Шрифт:
Интервал:
Закладка:
Если планета, например Земля, находится на пути этих пучков материи, мы можем наблюдать эффект маяка. Если же нет — мы никогда не найдем пульсар. В соответствии с моделью, из- за того что этот необычный, быстро вращающийся, сравнительно небольшой объект (при этом имеющий массу Солнца) активно взаимодействует (посредством своих очень мощных электромагнитных полей поверхности) с по–прежнему медленно (образно говоря) раскрывающимся «бутоном» внешних слоев (от взрыва сверхновой звезды), он также должен передавать свою собственную конечную величину вращательного момента большему по размеру облаку. Это неизбежно должно привести к медленному, равномерному и различимому «замедлению вращения» нейтронной звезды. В ходе наблюдений радио-, оптического и рентгеновского или гамма–излучения почти 1000 известных пульсаров, которые велись с момента их открытия в 1968 г., эффект «замедления вращения» был зафиксирован в различных вариациях. Периодичность пульсаций радио-, оптического и рентгеновского или гамма–излучения этих звезд очень четкая. Время от времени наблюдается небольшое, однако поддающееся измерению увеличение интервалов между импульсами на протяжении нескольких лет, что является признаком очень медленного «затормаживания» этих маленьких звезд. Такое замедление вращения подтверждает известный закон сохранения вращательного момента и позволяет определять возраст этих звезд, являясь своего рода «импульсными часами» с предполагаемым постоянным полупериодом жизни.
Поскольку около половины известных звезд являются двойными, когда одна из них взрывается и становится сверхновой, она отталкивает себя от компаньонов в противоположном направлении с орбитальной скоростью. Пульсар в созвездии Стрельца с течением времени вылетает прямо из медленно расширяющегося газового обрамления, образовавшегося от взрыва (расходящаяся взрывная волна идет в межзвездное облако и замедляется, ядро нейтронной звезды — нет). Используя известное расстояние, космическую скорость и геометрию взаимоотношения пульсар/облако, новейшие измерения действительной космической скорости этого пульсара, произведенные при помощи радиотелескопа с большой антенной системой (VLA), показали, что она составляет только 300 миль в секунду — гораздо меньше прогнозировавшихся ранее 1000 миль в секунду.
Исходя из «скорости замедления», возраст нейтронной звезды/пульсара (при взрыве сверхновой) оценивался ранее примерно в 16000 лет. Однако исходя из «кинематического» возраста звезды (измеренного по ее известной скорости за пределами ее собственной внешней границы расширения), момент изначального взрыва отодвигается в прошлое примерно на 170000 лет. В результате мы имеем более чем десятикратную разницу в оценке возраста нейтронной звезды.
Поскольку современное измерение космической скорости пульсара обсуждению не подлежит (это очень простое измерение в сравнении с моделью затормаживания пульсара), время формирования пульсара (и отделения от своего компаньона) должно быть примерно тем же: 170000 лет. Итак, пульсар существовал 170000 лет, хотя скорость, с которой замедлялось его вращение, указывала на гораздо более молодой возраст. Очевидно, что принципиальная ошибка имеется в самой модели пульсара с конечной величиной вращательного момента, уменьшающегося при расширении.
Самое простое объяснение состоит в том, что звезда могла подпитываться от ранее неизвестного источника вращательного момента, который «непрерывно подзаряжал» вращение нейтронной звезды, даже когда ускорение заряженных частиц в пучках истекало из нее со скоростью, которая превышала срок активной жизни пульсара примерно в 10 раз в сравнении с наблюдаемой «скоростью» замедления. Этот «неизвестный источник» энергии точно предсказан в соответствии с теорией гиперпространственной модели, которая утверждает, что чем больший вращательный момент объект имеет изначально, тем больше он может «подпитывать» этот невидимый источник энергии для обеспечения момента в отличие от известных трехмерных механизмов передачи. Действительный механизм обеспечения вращения пульсара — это, вероятно, преобразование прецессионной энергии звезды (которая, как показали опыты ДеПалмы, не пропорциональна близлежащему гравитирующему компаньону) в энергию вращения. В качестве подходящего случаю примера можно привести ванны с отверстием. Вода вытекает из ванной через отверстие с наблюдаемой скоростью — однако «наблюдатель» не знает о скрытой водопроводной сети, через которую ванна наполняется вновь со скоростью, почти, но все же не совсем равной скорости убывания воды через отверстие. В результате «срок жизни» объема воды в ванне значительно увеличивается без видимых причин. В итоге: вода вытекает из ванны значительно медленнее, чем должна, хотя скорость вытекания воды через отверстие хорошо известна.
Откровенно говоря, другого объяснения «избыточного» вращательного момента пульсара В1757–24 не существует. Что бы ни выдумывали сторонники общепринятых взглядов, чтобы залатать прорехи в своих теориях, гиперпространственная модель не только косвенно, но и целенаправленно, усилиями Хогленда и Торана, предсказала именно эти открытия. Это дает пять специальных предсказаний гиперпространственной физической модели Хогленда, модели, основывающейся на якобы бессмысленных геометрических соответствиях монументов Марса, подтвержденных эмпирическими наблюдениями. Есть и еще один пульсар «для опытов» — PSR В1828–11, — который, вероятно, также может доказать правоту гиперпространственной модели при помощи целого ряда различных измерений: по- прежнему требующей подтверждения лабораторными опытами теории Брюса ДеПалмы относительно «свободной прецессии».
PSR B1828–11 — это «изолированный» пульсар (т. е. не входящий в двойную звездную систему), который также располагается в направлении созвездия Стрельца. В конце 2000 года три астронома из обсерватории Джодрел Бэнк при помощи радиотелескопа произведи ряд наблюдений, в результате которых было обнаружено удивительное свойство этой быстро вращающейся нейтронной звезды: у нее было три «периода» пульсаций радиоизлучения, в то время как обычно он один. Был обнаружен так называемый «основной период», составляющий около 1000 дней, и три «субгармоники», по 500, 250 и 167 дней каждая.
Сначала открыватели объяснили эти данные тем, что пульсар, несмотря на свою абсолютную изолированность, почему- то демонстрирует «прецессию безвоздушного пространства». Его радиолучи приходят к Земле со все больше меняющейся формой основного импульса и периодом пульсации… с повторяющейся цикличностью… что указывает на наличие физической прецессии у самой вращающейся нейтронной звезды!
Другие астрофизики сразу же предложили несколько альтернативных теоретических объяснений этого необычного поведения:
«Хотя пульсар PSR В1828–11 и состоит из сверхплотного моря свободных нейтронов, сжатых внутри сферы диаметром всего лишь 20 км, и гравитация на нем в сто миллиардов раз больше,