- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Если бы числа могли говорить. Гаусс. Теория чисел - Antonio Lizana
Шрифт:
Интервал:
Закладка:
Хотя Гаусс не публиковал работ по неевклидовой геометрии, это не означает, что он вообще не занимался геометрическими проблемами. В 1827 году ученый представил фундаментальную работу о дифференциальной геометрии, использовавшую элементы математического анализа. Книга, озаглавленная Disquisitiones generales circa superficies curvas («Общие исследования о кривых поверхностях»), представляет собой вклад Гаусса в дифференциальную геометрию. В этой работе ученый создал дифференциальную геометрию поверхностей, которая в последующие десятилетия была дополнена работами многих математиков. Основная проблема здесь — это отражение на плоской карте геометрии других типов поверхностей. В самых простых случаях (при постоянной кривизне) появляются гомогенные геометрии: евклидова, эллиптическая и гиперболическая (именно ее разработали Бойяи и Лобачевский). Гаусс пошел намного дальше этих гомогенных пространств и ввел то, что сегодня называется кривизной Гаусса, — обобщение для поверхностей определенной кривизны на плоскости.
Это позволило ему сформулировать так называемую Theorema Egregium (выдающуюся теорему), главный результат дифференциальной геометрии. Говоря неформально, в теореме утверждается, что гауссова кривизна дифференцируемой поверхности может быть полностью определена посредством измерения углов и расстояний на самой поверхности, не ориентируясь на конкретную форму, которую она принимает в трехмерном евклидовом пространстве. Из этого следует, что понятие кривизны — это локальное свойство.
КРИВИЗНА ГАУССАВ геометрии кривая (в параметрическом виде) определяется на плоскости как отображение a (s) = (x(s),y (s)), где s — действительное число, а функции x(s) и y(s) дают координаты на плоскости. Параметрическими называются такие уравнения, в которых переменные х и у, каждая по отдельности, выражены через третью переменную, или параметр (в нашем случае s). Кривая должна быть непрерывной и дифференцируемой функцией, то есть плавной линией без углов. Так как она дифференцируемая, то в каждой точке s кривой можно определить касательную к ней. По определению кривизна а в s определяется как угол, образуемый касательной к кривой в точке s, t(s), с фиксированным направлением на плоскости, которое для удобства принимается за ось ОХ координат, то есть:
θ(s) = угол, образованный между < t(s), ось ОХ>.
Так что обычная кривизна k(s) кривой определяется как дифференциал функции θ, то есть:
k(s) = θ'(s).
На самом деле k{s) измеряет удаленность кривой от касательной прямой. Кривизна Гаусса, которая в некотором роде обобщает это понятие для поверхностей, может быть определена различными способами, самый простой из них задан выражением:
К=k · k2,
где k1 и k2 — это главные кривизны в каждой точке пространства.
Изометрия — это математическое преобразование двух пространств, которое оставляет инвариантными расстояния между точками. Пример изометрии в евклидовом пространстве из трех измерений — это вращения. Итак, следствие из Theorema Egregium в том, что у двух поверхностей существуют изометрии, только если у них одинаковая гауссова кривизна. Очень показателен следующий пример: сфера с радиусом R имеет постоянную гауссову кривизну, равную R-2, в то время как плоскость имеет нулевую кривизну. Как следствие Theorema Egregium, лист бумаги невозможно согнуть или повернуть так, чтобы получилась часть сферы, не сминая или не надрезая его. И наоборот, поверхность сферы не может быть представлена как плоскость без искажения расстояний.
У этого факта есть важный вывод для картографии: нельзя построить карту Земли, на которой масштаб был бы одинаковым в каждой точке плоскости. Следовательно, все обычно используемые проекции изменяют масштаб в различных точках и дают некоторое искажение. Идеальной карты Земли не существует и не может существовать.
В дифференциальной геометрии четко показано, что на поверхностях, не являющихся плоскими, самая короткая линия, которая соединяет две точки, необязательно прямая, как это происходит в евклидовых пространствах. Именно поэтому пришлось ввести новое понятие (геодезическая линия), которое обозначает кратчайшую линию, соединяющую две точки поверхности. Этот принцип используется в воздушной и морской навигации для установления самых коротких маршрутов без прямых линий. Рассмотрим следующий рисунок.
На самом деле кратчайшее расстояние от аэропорта Мадрида до аэропорта Нью-Йорка — это расстояние, пройденное по кривой, нарисованной сверху от прямой, которая соединяет эти два города на карте. Очевидно, что на плоскости это не так, но на поверхности, подобной сферической (как Земля), геодезическая линия, то есть кратчайшая между двумя точками, не является прямой.
ГАУСС И ТЕОРИЯ ОТНОСИТЕЛЬНОСТИОбщая теория относительности — это устоявшееся название для обозначения гравитационной теории, опубликованной Альбертом Эйнштейном в 1915 году. В соответствии с общей теорией относительности сила гравитации — это локальное проявление геометрии времени-пространства. Релятивистскую модель в обычном евклидовом пространстве построить невозможно. В теории относительности необходимо, чтобы пятый постулат Евклида о параллельных прямых не имел единственного решения. Как мы уже видели, Гаусс, Лобачевский и Бойяи доказали, что эта аксиома не зависит от предыдущих и что от нее можно отказаться, не получив противоречия. Риман разработал общую математику для неевклидового пространства в своей докторской диссертации, руководителем которой был Гаусс. Без этих математических инструментов Эйнштейн не смог бы создать свои труды. Именно его вклад сделал неевклидову геометрию популярной, открыл ее настоящую ценность. До Эйнштейна считалось, что это лишь абстрактная теория, поэтому Гаусс ничего и не опубликовал на эту тему.
В изучении поверхностей Гаусс широко использовал параметрическое представление, введенное Эйлером, осуществляя внутреннее представление поверхности как двумерное изображение. Координаты точки (х, y, z) заданы тремя уравнениями в зависимости от двух параметров: х = х(u, v); у = у(u, v); z = z(u, v). Можно сказать, что стилистически «Общие исследования о кривых поверхностях» — самая совершенная работа Гаусса. Ее аналитическое, прямое и очень лаконичное изложение позволяет представить каждую геометрическую идею в полной форме. Как признавался сам Эйнштейн, «теории относительности не существовало бы без геометрии Гаусса».
ГАУСС И ФИЗИКАКлючевым в жизни Гаусса был 1831 год. За год до этого его сын Ойген уехал в США из-за семейных размолвок, а в этом году умерла Минна, вторая супруга ученого, — возможно, от туберкулеза, и его дочь Тереза взяла на себя ведение хозяйства. В конце этого же года в Гёттинген приехал Вильгельм Вебер, чтобы занять место преподавателя физики. С этого момента павший было духом Гаусс вновь нашел в науке спасение от своих семейных бед.
Как в научных, так и в дружеских отношениях между Гауссом и Вебером царила полная гармония; Вебер познакомил математика с новыми областями исследования, часть из которых была экспериментальной. Плодотворное сотрудничество, да и само присутствие коллеги помогли Гауссу пережить этот тяжелый период. Он всегда интересовался физикой, но многие его исследования, исключая сделанные в области астрономии и геодезии, носили сугубо теоретический характер. Прежде чем познакомиться с Вебером, Гаусс занялся вариационным исчислением, которое было одной из центральных тем XVIII века. Оно может быть рассмотрено как математическая задача, но является базовым для многих задач физики. Вариационные задачи — это задачи на оптимизацию, в них речь идет о нахождении лучшего значения, но здесь оптимум — это не значение, а функция.
Мы привыкли рассматривать задачи на оптимизацию, которые математически формулируются как:
Min: ƒ(х)
а:х е S,
где S — множество значений, между которыми мы можем искать решение, что называется допустимым множеством. Функция ƒ также называется целевой функцией. С математической точки зрения не существует никакой разницы, заключается задача в максимизации или минимизации, поскольку можно совершить замену, всего лишь изменив знак целевой функции, так что следующая проблема равносильна предыдущей:
Min: -ƒ(х)
а:х е S,
В зависимости от типа функции ƒ и свойств допустимого множества у нас получится тот или иной тип задачи. Решение этого типа задач может быть как числом, так и вектором (рядом), в случае функции, определенной в пространстве с несколькими измерениями.
ВИЛЬГЕЛЬМ ВЕБЕРВильгельм Вебер (1804-1891) — немецкий физик первой половины XIX века. Получил образование в Университете.Галле и остался в нем преподавать до 1831 года, когда перешел в Гёттингенский университет. Там ученый подружился с Гауссом, с которым сотрудничал в исследованиях по электричеству и магнетизму.

