Том13. Абсолютная точность и другие иллюзии. Секреты статистики - Пере Грима
Шрифт:
Интервал:
Закладка:
Следовательно, как и при анализе материала для подошв, наилучшим вариантом будет раздать всем очки, в которых на одно стекло будет нанесено одно покрытие, на второе стекло — другое покрытие (разумеется, это невозможно, если цвета покрытия отличаются). Стоит ли выбирать покрытие случайным образом или же можно всегда использовать покрытие А для правых стекол, покрытие В — для левых?
Ученые, проводившие подобные эксперименты, говорят, что мы всегда начинаем протирать очки с одного и того же стекла. Тот, кто сначала чистит правое стекло, всегда чистит первым именно его, а то стекло, которое протирается первым, как правило, будет чище. Поэтому всегда лучше производить выбор случайным образом.
Сделайте это самиСуществуют городские легенды (кто знает, возможно, это не просто легенды), которые можно проверить с помощью статистики. Рассмотрим несколько примеров.
Помогает ли чайная ложка удержать газ в бутылке шампанского?
Некоторые люди считают, что если опустить ложку в горлышко бутылки шампанского, то из нее не будет выходить газ (или по крайней мере он будет выходить медленнее, чем из открытой бутылки) и вино дольше сохранит свой вкус. Как развеять сомнения? Попробовать, то есть провести эксперимент.
Эта задача похожа на задачу о дегустаторе чая. Можно попросить кого-нибудь попробовать шампанское из бутылки, в горлышко которой положили ложку, затем из бутылки с открытым горлышком. Мы уже знаем, что одного бокала из каждой бутылки недостаточно. Нужно налить минимум три бокала из одной бутылки и столько же — из другой. Бутылки должны быть полностью одинаковыми и должны храниться в одинаковых условиях. Единственная разница должна состоять в том, что в горлышко одной бутылки положили ложку.
Вероятность случайно угадать все три бокала из бутылки, в горлышко которой положили ложку, равна 5 % (напомним, что три предмета из шести можно выбрать 20 разными способами, лишь один из которых является правильным). Чтобы снизить вероятность случайного угадывания, нужно предложить дегустатору больше бокалов, но следует учесть, что после определенного числа бокалов он уже не сможет четко различать вкус шампанского.
Можно дать попробовать шампанское нескольким людям, но нужно быть внимательным: в этом случае вероятность случайного угадывания возрастет. Если вероятность того, что один человек точно укажет все три бокала, равна 5 %, то вероятность того, что один из пяти человек верно определит все три бокала, будет равна примерно 40 %, и сделать какие-то точные выводы будет нельзя.
Очевидно, что можно использовать прибор, измеряющий содержание газа в вине, и получить абсолютно точный результат. Однако не стоит забывать, что прибор может указать на различия, которые будут неощутимы на вкус, а между тем именно они представляют для нас интерес. Следовательно, вопреки показаниям прибора, класть ложку в горлышко бутылки не имеет смысла. По этой же причине не стоит доверять проведение эксперимента дегустатору вина, способному определять его вкус с исключительной точностью.
Умеете ли вы выбирать дыни?
Задача о выборе спелой дыни еще больше похожа на задачу о дегустаторе чая. Некоторые люди утверждают, что умеют выбирать спелую дыню по весу, на звук и так далее. Чтобы определить, так ли это на самом деле, можно выбрать пять дынь случайным образом и предложить знатоку выбрать из них одну, по его мнению, самую спелую. Далее нужно взять по одной дольке из каждой дыни и снова предложить выбрать самую спелую, но теперь уже на вкус. Разумеется, в обоих случаях знаток должен указать одну и ту же дыню. Недостаток этого эксперимента заключается в том, что вероятность случайного угадывания равна 1/5 (20 %), следовательно, результат будет ненадежным. Однако вероятность случайного угадывания в двух случаях из двух составляет всего 4 %, в трех случаях из трех — 8 %, что крайне маловероятно, если знаток действительно не умеет выбирать спелые дыни.
Будут ли цветы стоять дольше, если добавить в воду аспирин?
По-видимому, аспирин полезен не только для человека. Достаточно распространено мнение, что цветы будут стоять дольше, если добавить в воду аспирин. Чтобы проверить это экспериментально, можно взять два букета по 20 цветов (лучше если все цветы будут разными, то есть выбрать по две розы, две гвоздики, две маргаритки и так далее). Далее нужно поставить букеты в вазы и убедиться, что они находятся в абсолютно одинаковых условиях. Единственное различие будет заключаться в том, что в воду в одной вазе мы добавим немного аспирина, в другой — нет.
Если эффект от аспирина отсутствует, вероятность того, что первым завянет определенный цветок, равна 50 %. Следовательно, крайне маловероятно, что во всех 20 случаях дольше простоят цветы в той вазе, куда был добавлен аспирин. Вероятность случайного совпадения равна вероятности выпадения решки 20 раз подряд при 20 бросках монеты. Применив правило «и» (см. главу 2), получим: 0,520 = 9,5·10-7 (порядка одной миллионной). Если цветы в вазах с аспирином будут стоять дольше, это будет очевидно доказывать эффективность аспирина.
Вероятность того, что цветы в воде, куда был добавлен аспирин, будут стоять дольше минимум в 19 случаях, равна 2 на 10000; минимум в 15 случаях — порядка 2 %; в 14 случаях — почти 6 %. Следовательно, неудивительно, что цветы будут стоять дольше в воде, куда был добавлен аспирин, в 14 случаях и менее, даже если аспирин не оказывает абсолютно никакого эффекта. Приняв вероятность ошибки равной 5 % (эта величина называется уровнем значимости), аспирин следует считать эффективным, если цветы будут стоять дольше минимум в 15 случаях из 20.
Этот эксперимент очень прост, и в нем не учитывается, на сколько дольше сохраняется один цветок по сравнению с другим — на день, два дня или на неделю. Можно использовать и другие показатели, например критерий Уилкоксона, в котором учитывается разница во времени для каждой пары цветов. Однако важнее, чтобы эксперимент был проведен корректно, а его выводы не экстраполировались на другие случаи, нежели какой именно критерий мы выберем.
Действительно ли дорогие батарейки работают дольше?
Когда мы покупаем бытовую технику, то помимо прочих факторов учитываем и ее внешний вид. Однако при покупке батареек единственный важный параметр — это время их работы.
Любопытно проанализировать разницу в ценах между одинаковыми батарейками в зависимости от марки или магазина, где они были куплены. Обычные батарейки с напряжением 1,5 В от известных производителей могут стоить в два раза дороже батареек, купленных в дешевом супермаркете (и это совсем не значит, что там продаются только плохие батарейки). Также верно и то, что в последнее время известные производители предлагают различные скидки, и разница в цене уже не столь велика — рынок диктует свои правила.
Правда ли, что дорогие батарейки работают дольше? И если они действительно работают дольше, то выгоднее ли покупать их? Иными словами, компенсирует ли разница во времени работы разницу в цене? Чтобы ответить на эти вопросы, нужны данные. Необходимо тщательно продумать алгоритмы сбора данных и проанализировать их нужным образом, чтобы получить достоверный результат. Иначе говоря, нужно использовать методы статистики. Задачу непросто решить по следующим причинам.
* * *
КАК РАЗДЕЛИТЬ 20 МЫШЕЙ НА ДВЕ РАВНЫЕ ГРУППЫ СЛУЧАЙНЫМ ОБРАЗОМ?
Допустим, мы хотим провести эксперимент на лабораторных мышах, чтобы сравнить, как различные диеты (обозначим их А и В) влияют на выносливость. У нас есть 20 мышей приблизительно одного возраста, их остальные характеристики также примерно равны. Мы делим их на две группы по 10 и кормим мышей каждой группы в соответствии с определенной диетой. По прошествии нескольких месяцев мы проводим эксперимент: помещаем мышей в воду и замеряем, сколько времени они смогут удержаться на поверхности, после чего вытаскиваем их из воды. Эксперимент показывает, что мыши, которых кормили по диете В, более выносливы, чем те, которых кормили по диете А: разница во времени, в течение которого мыши удерживались на поверхности воды, является статистически значимой и однозначно свидетельствует в пользу диеты В. Кажется, вы совершили открытие. Но как именно вы поделили мышей на группы? Разумеется, случайным образом: вы засовывали руку в клетку и «случайным образом» доставали 10 мышей по очереди. Эти мыши составили группу А, те, что остались в клетке, — группу В.
Что-то не так? Разумеется. Мыши были разделены на группы не случайным образом. Когда мы достаем мышей из клетки, то, скорее всего, сначала мы достанем самых медленных, то есть самых слабых. Эти мыши образуют группу А, мыши из которой по итогам эксперимента оказались менее выносливыми. Но почему эти мыши оказались более медленными? Причина в диете или в том, что мы изначально собрали более медленных мышей в одной группе? Определить это нельзя. Вывод: важно гарантировать, что принцип формирования групп полностью случаен, например с помощью случайных чисел, бумажек или другим похожим способом. Если группы были сформированы не случайно, эту ошибку очень трудно исправить.