- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
На лужайке Эйнштейна. Что такое ничто, и где начинается всё - Аманда Гефтер
Шрифт:
Интервал:
Закладка:
Расплавить вакуум? Эта фраза не выходила у меня из головы. Она была пугающе странной – как вы можете расплавить ничто? Ладно, я знала, что вакуум на самом деле не был «ничто». Ничто – это, по-видимому, состояние с нулевой энергией. Но ноль – слишком точное число для квантовой механики. Квантовое ничто активно бурлит благодаря соотношению неопределенности между энергией и временем: чем короче интервал времени, тем больше энергия, которая может спонтанно возникнуть из глубины вакуума только для того, чтобы в мгновение ока снова исчезнуть. Эта энергия может принять форму виртуальной пары частицы и античастицы, которые рождаются из кипящего вакуума и затем, встретившись, аннигилируют друг с другом. Но как же эти виртуальные флуктуации вакуума связывают кварки вместе? Мне придется еще разобраться в этом, – и побыстрее.
Из всего, что я узнала о квантовой хромодинамике, в которую по уши погрузилась, именно вакуум, как и сказал Рафельский, удерживает кварки, не позволяя им удаляться друг от друга. Благодаря квантовой неопределенности в глюонном поле рождаются виртуальные глюоны. Но дело в том, что глюоны – даже виртуальные – несут заряд. Задача глюонов – склеивать кварки за счет так называемого сильного взаимодействия. Глюоны распознают кварки по их цветовому заряду. Фотоны действуют аналогичным образом, перенося электромагнитное взаимодействие между электронами, которые они определяют по их электрическому заряду. Но, в отличие от фотонов, которые не переносят никакого электрического заряда, глюоны имеют цвет и, помимо кварков, взаимодействуют и сами с собой, и с другими глюонами. В кипящем вакууме виртуальные глюоны прилипают друг к другу, скручиваются и деформируются, образуя сложные структуры – структуры, которые создают для кварков барьер, делая невозможным их свободное существование в вакууме. Стиснутые в кипящем море виртуальных глюонов, кварки жмутся друг к другу – красный, синий и зеленый. Отсутствие цвета защищает их от опасных клейких глюонов. Бесцветный конгломерат из трех кварков образует протон или нейтрон, а из них, в свою очередь, составляются массивные ядра атомов. Если бы не структура вакуума, атомы бы развалились.
Сила виртуального глюонного поля препятствует движению кварков; если вы попытаетесь ухватить один из кварков и сдвинуть с места, ничего не выйдет. Как будто бы он тяжелый. Таким образом, виртуальное глюонное поле вакуума обеспечивает кваркам 95 % их массы, что, в свою очередь, обеспечивает протоны и нейтроны их массой, а это, в свою очередь, определяет 99 % массы атомов… Все это означает, что масса всего, что нас окружает, включая наши собственные тела, не сильно отличается от массы самого вакуума. Материальный мир состоит из ничего. Лукреций сказал, что «ничто из ничего не родится». Квантовая хромодинамика это опровергает.
Чтобы сделать кварки свободными, вы должны растворить виртуальные глюонные структуры вакуума. Позаботьтесь, чтобы температура и энергия были повыше, поближе к тем, что были в условиях Большого взрыва, и вакуумные структуры расплавятся. По мере того как исчезают замысловатые формы, вакуум начинает все больше и больше походить на ничто. Становится гладкий и простой. Недифференцированный. Симметричный.
Как я выяснила, у симметрии есть важное свойство, которое всегда необходимо иметь в виду – она имеет тенденцию нарушаться. Как объясняется в любой из прочитанных мной книг, карандаш, балансируя на кончике своего грифеля, обладает идеальной осевой симметрией – обходя его по окружности на 360º, мы будем видеть одно и то же. Но положение его очень неустойчиво. Хотя карандаш находится в равновесии, он в любой момент готов упасть, потому что существует состояние с более низкой энергией: состояние, в котором он принимает горизонтальное положение. Малейшего ветерка будет достаточно, чтобы опрокинуть его. И хотя любой угол, под которым он может упасть, имеет одни и те же шансы, карандаш выберет только один. Когда он перейдет в горизонтальное положение, исходная симметрия нарушится.
Один из способов нарушить симметрию – понизить температуру. Лужа воды обладает высокой симметрией. На нее можно смотреть под любым углом, и она выглядит всегда одинаково. Но если ее охладить, она замерзает, в ней образуются кристаллы льда, обладающие большей структурой и меньшей симметрией.
Как я выяснила, физики аналогично рассуждают о Вселенной. При высоких температурах Большого взрыва вакуум был симметричен. По мере расширения и остывания Вселенной ее структура застывала, подобно сложным формам виртуального глюонного поля. Со структурой пришла масса. С массой пришло все остальное. Мир, который мы видим вокруг нас, и люди, которых мы видим, не представляют собой ничего большего, чем осколки нарушенной симметрии. Осколки ничто.
Я взяла книгу «Тоска по гармонии» Фрэнка Вильчека, лауреата Нобелевской премии по физике за его выдающийся вклад в создание КХД. Он пояснял, что спонтанное нарушение симметрии возникает всегда, когда для одного состояния с более высоким уровнем энергии существует бесконечное множество одинаковых состояний вакуума – как континуум возможных горизонтальных положений, которые может принять падающий карандаш.
«Наиболее симметричное состояние Вселенной, как правило, получается наименее устойчивым, – писал он. – Можно предположить, что Вселенная образовалась в самом симметричном из возможных состояний и что в таком состоянии не существовало материи, Вселенная представляла собой очень пустой вакуум, лишенный как частиц, так и полей. Для нее доступно и другое состояние на более низком энергетическом уровне, в котором фоновые поля заполняют пространство. В конце концов, если не по какой-либо иной причине, то в результате квантовых флуктуаций возникает клочок пространства с менее симметричным состоянием поля, который, в силу благоприятной энергетики, начинает расти. Высвобождаемая при этом энергия расходуется на рождение частиц. Это событие может соответствовать Большому взрыву… Наш ответ на знаменитый вопрос Лейбница „почему существует нечто, а не ничто?“ звучит так: „ничто неустойчиво“».
Но симметрия в действительности не нарушена, говорит Вильчек. Она просто скрыта. Вы всегда можете отыскать ее снова, если достаточно внимательно поглядите, скажем, на фундаментальные уравнения или внутрь файербола.
Наблюдение кварк-глюонной плазмы на RHIC свидетельствовало в пользу того, что в исходном состоянии вакуум был более симметричным. Но все же вакуум оказался более упругим, чем кто-либо ожидал. Слитное, как у жидкости, поведение кварков проявляло, скорее, какую-то остаточную асимметрию, а не свободное хаотичное движение частиц в газе. Чтобы достичь ничто, физики вставали перед необходимостью расплавить вакуум еще больше.
Когда я брала интервью у разных физиков, я обнаружила, что никто, казалось, не знает, что делать с этим неожиданным результатом. Но когда я искала в интернете, я наткнулась на незнакомое понятие – «AdS/CFT соответствие», с помощью которого можно было объяснить наблюдение ультражидкой плазмы. У меня не было достаточно времени, чтобы выяснить, что конкретно под этим имелось в виду, и не хватило места в статье, чтобы упомянуть о нем, но я записала в моем блокноте, чтобы потом не забывать: «Разобраться с AdS/CFT соответствием… что-то из области теории струн… объясняет жидкий файербол?»
Я написала статью и отправила ее в журнал незадолго до истечения срока. Но идея Вильчека о том, что ничто нестабильно, не выходила из моей головы. Это была какая-то удивительная мысль, и она обещала прояснить ужасно много чего. Мы с отцом провели много времени, размышляя над тем, почему ничто – бесконечное однородное и неограниченное состояние – когда-либо изменяется. С какой стати что-то совершенно однородное, абсолютно симметричное должно когда-нибудь начать разрушаться? Почему оно когда-нибудь должно стать Вселенной? Вильчек, казалось, дал на это ответ. Ничто было нестабильным. Эта загадка Вселенной решена.
Почти. Проблема с привлечением механизма спонтанного нарушения симметрии для объяснения изначальной алхимии, превращения ничто в нечто, симметрии в структуру, заключается в том, что он требует некоторой внешней силы, легкого ветерка, который подтолкнет Вселенную к изменениям. Но вне Вселенной ничего нет. Вильчек высказал предположение, что квантовые флуктуации могли бы обеспечить такой легкий бриз, но от этого легче не становилось. Если вы используете законы квантовой механики для того, чтобы объяснить возникновение Вселенной, вы оставляете факт существования самих законов необъяснимым. Гут признавал это: «Я предполагаю, без особых на то оснований, но я предполагаю, что законы физики существовали и до рождения Вселенной. Если мы не предположим это, то мы не сможем продвинуться дальше в теории».

