- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Познание необходимости. Детерминизм как принцип научного мировоззрения - Владимир Петрович Огородников
Шрифт:
Интервал:
Закладка:
Не только условие, кондициональная детерминация, может играть роль случайности–дополнения процесса. Любые типы детерминаций процесса, генетически сторонние данному процессу, выступают в роли случайности–дополнения и определяют случайно–конкретную форму действительности процесса. Одним из таких типов является функциональная детерминация.
3. Функциональная детерминация и корреляция
Вопрос о функциональной связи и функциональной детерминации является одним из наиболее сложных и спорных в теории детерминизма. Особое место занимает проблема соотношения функциональной связи и причинности. Г. А. Свечников полагал, что «функциональная зависимость есть лишь один из способов отражения причинных связей» [177, с. 129]. Данное мнение в той пли иной форме разделяют многие авторы. С. Г. Яцковский, например, считает, что функциональная связь и причинность относятся между собой как явление и сущность [см.: 226, с. 15–16], А. М. Магомедов приходит к выводу, что «функциональная связь отражает причинность не только тех явлений, которые генетически связаны, но в равной степени и сосуществующих явлений» [112, с. 7].
Все эти подходы так или иначе базируются на определении функции как характеристики зависимости между изменениями элементов (частей) одной системы или взаимосвязанных систем, приближающемся к математическому определению функциональной зависимости: «…две переменные величины X, Y связаны функциональной зависимостью, если каждому значению, которое может принять одна из них, соответствует одно пли несколько определенных значений другой» [56, с. 386]. Такое определение действительно не содержит указания па причины и сущность связи, а лишь описывает ее характер. Однако в данном определении есть моменты, которые не позволяют интерпретировать функциональное отношение как способ существования, форму причинных связей. Во–первых, между переменными не устанавливается никакой однозначной субординации, они взаимно влияют друг на друга, тогда как в причинном отношении активная направленность действия причины является непременным условием. Во–вторых, нет указания на генетическую связь между переменными, что составляет главный критерий причинности. Вместе с тем отсутствие генетической связи в функциональном отношении отнюдь не делает последнее недостаточным для формулирования детерминации [см.: 152, с. 281]. Кондициональная детерминация, например, также лишена генетического признака.
В приведенных определениях функциональной связи ясно чувствуется влияние идей подвергнутого выше критике «панкаузализма». Следует, однако, сделать ряд оговорок в отношении математического понятия функциональной зависимости, с тем чтобы его можно было использовать для формулирования функциональной детерминации как философского понятия. Математическое понятие функциональной зависимости распространяется на отношения не только между физическими величинами, но и на абстрактные математические символы, не имеющие своего прямого референта в действительности. Забвение этого положения, «онтологизация» математической функции неминуемо ведут к идеализму. В. И. Ленин боролся против подмены позитивистами причинности именно такими функциональными выражениями [см.: 4, т. 18, с. 163–165]. Функциональное отношение может выражать причинную связь, если принять необратимую зависимость между аргументом и функцией, однако такое допущение идет вразрез с приведенным определением функциональной зависимости.
Следует различать математическую функциональную зависимость и функциональную детерминацию как активный момент реального взаимодействия (что может быть в некоторых случаях описано на языке математической функциональной зависимости). Под функциональной детерминацией нами понимается такая взаимосвязь двух или нескольких процессов, когда каждый из них в равной мере определяет становление и само существование остальных. Таким образом, функциональная детерминация фиксирует простой факт, что ни один материальный процесс не происходит в абсолютной изоляции, а связан и зависит от параллельно протекающих процессов.
Далеко не всякая математическая функция описывает функциональную детерминацию. В определении последней мы переходим от формального отношения математической функции к содержательному отношению, которое она выражает. Например, простейшая математическая функция, отражающая зависимость между пройденным путем S, скоростью движения v и затраченным временем t, S=v∙t, являясь математической функциональной зависимостью переменных величин, не отражает функциональной детерминации. Нельзя говорить о том, что время или скорость детерминируют путь. Детерминация всегда остается активным моментом взаимодействия, а в данном случае бессмысленно задаваться вопросом о характере взаимодействия тех величин, которые входят в функциональное отношение.
Рассмотрим другой пример. В кишечнике термитов обитают простейшие — жгутиковые, которые имеют возможность при помощи специальных ферментов расщеплять поедаемую их «хозяевами» древесину до сахаров. Термиты погибают в отсутствие жгутиковых, так как не обладают способностью самостоятельно переваривать древесину. В свою очередь жгутиковые могут существовать только в кишечнике термитов, ибо только там они находят достаточное количество полуприготовленной пищи и нужные условия жизни [см.: 52, с. 253]. В биологии такое отношение между видами получило название «мутуализм». Мутуализм часто может быть описан математической функцией, характеризующей численное соотношение, между особями различных видов и другие параметры. Здесь функциональное отношение отражает функциональную детерминацию. Функционирование одного вида определенным образом детерминирует функционирование другого вида. При этом детерминация выступает активной стороной взаимодействия видов.
Мутуализм являет собой пример положительной функциональной детерминации. Уместно выделить и отрицательную функциональную детерминацию, примером чего может служить борьба между биологическими видами за данную экологическую нишу. Результатом такой отрицательной функциональной детерминации является либо истребление одного вида другим (полное подавление), либо миграция — перемещение одного из «противников» в другую экологическую нишу (прекращение взаимодействия). Отрицательным такой вид функциональной детерминации может быть назван потому, что изменение, вызываемое действием детерминации, всегда имеет в этом случае негативный характер для процесса, подвергаемого данной детерминации.
От положительной и отрицательной функциональной детерминации следует отличать функциональное отношение противоположностей, в котором эти два вида функциональной детерминации представлены в единстве. Примером такой детерминации является взаимодействие в системе «травоядное — хищник». Здесь функциональное отношение также может быть математически смоделировано [см.: 64, с. 26–27].
Мы построили изложение на примерах из биологии, где отношения функциональной детерминации представлены наиболее выпукло. Однако можно привести данные химии, геологии, социологии. Функциональная детерминация является типом детерминации, который присущ всем развивающимся системам на любом уровне организации материи.
Безусловно, следует отличать функциональную детерминацию как взаимодетерминацию от детерминации условиями (кондициональной) как детерминации однонаправленной. В этом смысле мы согласны с М. А. Парнюком, отмечающим: «Функциональная зависимость означает прежде всего, что изменению одной величины соответствует изменение другой… что стороны отношения симметрично взаимозависимы…» [152, с. 279].
Одной из неотъемлемых характеристик функциональной детерминации выступает обратная связь (положительная или отрицательная), вне которой подобная детерминация не могла бы осуществляться (не было бы места симметричной взаимодетерминации). Наличие обратной связи — один из критериев отличия функциональной детерминации от корреляции, с которой она часто отождествляется.
Сущность корреляции, по А. А. Чупрову, «заключается в том, что возможные значения одной переменной встречаются в сочетании с разными значениями другой переменной и что каждому сочетанию присуща определенная вероятность» [209, с. 38]. Приняв данное определение за исходное, мы видим его отличие от определения функциональной математической зависимости. Последняя предполагает строго определенное изменение одной величины при изменении другой, связанной с ней функционально. Здесь же речь идет о том, что значения переменных не соответствуют друг другу в изменении, а лишь встречаются

