- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк
Шрифт:
Интервал:
Закладка:
• Точная космология открыла, что с момента рождения Вселенной ею управляют простые математические законы.
• Как ни была бы красива классическая модель Большого взрыва, она не годится для самых первых мгновений жизни Вселенной, а значит, для понимания истоков нам предстоит найти другие важные части головоломки.
Глава 5. Наше космическое происхождение
В начале была создана Вселенная. Это у многих вызвало крайнее раздражение, и в основном рассматривалось как плохой ход.
Дуглас Адамс«Ресторан на краю Вселенной»[15]«Онет! Он засыпает!» В 1997 году я делал доклад в Университете им. Тафтса. Легендарный Алан Гут специально приехал из Массачусетского технологического института, чтобы меня послушать. Я не встречался с ним прежде, и присутствие в аудитории такого светила заставляло меня гордиться и нервничать. В основном нервничать, особенно когда его голова начала клониться на грудь, а взгляд стал отсутствующим. Я постарался говорить бодрее и громче. Несколько раз он вскидывался, но вскоре я потерпел фиаско: он отправился в царство снов и не возвращался до конца доклада. Я чувствовал себя опустошенным.
Лишь много позднее, когда мы стали коллегами по Массачусетскому технологическому институту, я узнал, что он засыпает на всех докладах (кроме собственных). Сказать по правде, мой аспирант Адриан Лю говорит, что такое стало случаться и со мной. И с ним самим тоже. Но я этого никогда не замечал, поскольку мы трое отключаемся в одном и том же порядке. Если Алан, я и Адриан сидим рядом, то воспроизводим дремотную версию «волны», популярной у футбольных болельщиков.
Рис. 5.1. Андрей Линде (слева) и Алан Гут (справа) на шведском фестивале раков. Они не в курсе, что я их фотографирую и что им, двум главным архитекторам теории инфляции, придется одеться иначе для церемонии награждения престижными премиями им. Грубера и Мильнера.
Алан настолько же дружелюбен, насколько и умен. Аккуратность, правда, не относится к сильным его сторонам: когда я впервые появился у него в кабинете, то обнаружил на полу толстый слой нераспечатанной корреспонденции. Выбрав наугад конверт, я увидел штемпель десятилетней давности. В 2005 году достижения Алана в этой области были удостоены престижной премии за самый захламленный кабинет в Бостоне.
Что не так с Большим взрывом?
Но эта премия – не единственное достижение Алана. Около 1980 года он узнал от физика Боба Дикке, что во фридмановской модели Большого взрыва существуют серьезные проблемы с самыми ранними стадиями, и предложил радикальное решение, которое назвал инфляцией[16]. Экстраполяция фридмановских уравнений расширяющейся Вселенной назад во времени приводит к огромным успехам: они отлично объясняют, почему далекие галактики разбегаются от нас, и откуда взялся фон космического микроволнового излучения, и как возникли легкие элементы и многие другие наблюдаемые явления.
Вернемся в прошлое, к границе нашего знания, к тому мгновению, когда Вселенная расширялась столь быстро, что в следующую секунду ее размеры удвоились. Уравнения Фридмана говорят нам, что до того Вселенная была еще плотнее и горячее, и этому нет предела. И, в частности, примерно на 1/3 секунды ранее имело место начало, когда плотность нашей Вселенной была бесконечной и все существующее разлеталось друг от друга с бесконечной скоростью.
Вслед за Дикке Алан Гут тщательно изучил эту историю возникновения нашего мира и понял, что она страшно неестественна. Например, на четыре вопроса из числа приведенных в начале гл. 2 она дает такие ответы:
– Что стало причиной нашего Большого взрыва?
– Объяснения этому нет. Уравнения просто учитывают, что это случилось.
– Произошел ли наш Большой взрыв в одной точке?
– Нет.
– Где именно в пространстве произошел наш Большой взрыв?
– Он случился везде, сразу в бесконечном множестве точек.
– Как бесконечное пространство может быть порождено за конечное время?
– Объяснения этому нет. Уравнения просто учитывают, что пространство было бесконечным уже в момент его появления.
Можно ли сказать, что эти ответы раскрывают суть дела и элегантно снимают все вопросы о Большом взрыве? Если нет, то вы в хорошей компании! На самом деле есть еще много вещей, которые фридмановская модель Большого взрыва не может объяснить.
Проблема горизонта
Проанализируем тщательнее третий вопрос из списка. На рис. 5.2 проиллюстрирован тот факт, что температура излучения космического микроволнового фона почти одинакова (с точностью до пятой значащей цифры) во всех направлениях. Если бы Большой взрыв случился в одних областях пространства существенно раньше, чем в других, у этих областей было бы разное время для расширения и остывания и температура на наших картах космического микроволнового фона варьировалась бы от места к месту не на 0,002 %, а почти на 100 %.
Но не мог ли некий физический процесс привести к выравниванию температуры гораздо позднее Большого взрыва? В конце концов, если лить холодное молоко в горячий кофе, не удивительно, что когда вы начнете пить, они станут однородно теплыми. Проблема в том, что процесс смешивания требует времени: необходимо подождать, чтобы молекулы молока и кофе перемешались. Однако у отдаленных частей Вселенной, доступных нашим наблюдениям, не было времени для такого перемешивания (еще в 60-х годах на это обратили внимание Чарлз Мизнер и его коллеги). У областей а и б (рис. 5.2), которые мы видим в противоположных направлениях на небе, не было времени для взаимодействия: даже информация, передающаяся со скоростью света, не успела бы дойти из а в б, поскольку свет от а прошел полпути – до точки, где находимся мы. Это значит, что фридмановская модель Большого взрыва не дает объяснения одинаковой температуры в точках а и б. Получается, что у этих областей было равное время для остывания после Большого взрыва, а отсюда следует, что они независимо испытали Большой взрыв почти в одно и то же время без какой-либо общей причины.
Рис. 5.2. У молекул горячего кофе и холодного молока достаточно времени для взаимодействия и выравнивания температуры. У плазмы в областях а и б не было времени для взаимодействия: даже информация, передаваемая со скоростью света, не успела бы дойти от а до б, поскольку свет от а достиг пока лишь тех, кто пьет кофе на полпути к б. Поэтому с точки зрения фридмановской модели Большого взрыва тот факт, что плазма в областях а и б тем не менее обладает одинаковой температурой, является загадкой.
Чтобы лучше понять, какое недоумение это вызвало у Алана Гута, представьте вот что. Проверив электронную почту, вы обнаружили приглашение на ланч от приятеля, а затем увидели, что все остальные ваши приятели прислали вам по письму с приглашением на ланч и что все до единого письма отправлены одновременно. Вы, вероятно, решили бы, что имеет место сговор и что появление всех этих писем вызвано общей причиной. Возможно, друзья решили устроить вам вечеринку-сюрприз. Для завершения аналогии с загадкой Алана о Большом взрыве, где области а, б, … соответствуют вашим приятелям, добавим, что вам точно известно: ваши друзья никогда не встречались, не связывались друг с другом и не имели доступа к какой-либо общей информации до отправки вам приглашений. Тогда пришлось бы признать это невероятным совпадением. На самом деле, слишком невероятным, так что вы, вероятно, решили бы, что сделали некорректное допущение и ваши друзья все же смогли снестись. И это точно тот вывод, который сделал Алан: то, что бесконечное множество независимых областей пространства испытали Большой взрыв одновременно, не может быть беспричинным совпадением. Должен иметься некий физический механизм, вызывающий и взрыв, и синхронизацию. Один необъясненный Большой взрыв – это уже плохо; бесконечное число необъясненных Больших взрывов, вдобавок прекрасно синхронизированных, – уже ни в какие ворота не лезет.
Это проблема горизонта: она затрагивает то, что мы видим на своем космологическом горизонте – в самых отдаленных областях, доступных для наблюдения. Словно этого мало, Боб Дикке рассказал Алану о втором затруднении фридмановской теории Большого взрыва, которую он назвал проблемой плоской геометрии.
Проблема плоской геометрии

