ВСЕЛЕННАЯ. РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ - Дэйв Голдберг
Шрифт:
Интервал:
Закладка:
Разумеется, иногда эта аналогия оказывается довольно-таки натянутой. Например, при игре в мини-гольф можно всегда заменить красный мяч синим, и ничего ужасного не произойдет. На игровые качества мяча цвет, повторим, не влияет. Но что будет, если мы заменим красный мяч футбольным? С точки зрения игры в гольф такая подмена будет «плохой симметрией», поскольку один мяч влезает в лунку, а другой — нет. Однако если бы вы не играли в гольф, а хотели проверить, ровный ли у вас в гостиной пол, то мяч для гольфа и футбольный мяч послужили бы этой цели с одинаковым успехом.
Более того, у электронов есть еще одно качество — так называемая фаза, которую вообще невозможно измерить. Измерить можно только разницу в фазах между двумя электронами1 . Два электрона с разными фазами в некоторых отношениях — одна и та же частица, а в некоторых — разные.
Да уж, с этими электронами одна морока.
В 1940 годах Ричард Фейнман из Калифорнийского технологического института придумал совершенно новый подход ко всему этому. Он спросил, что бы произошло, если бы существовало поле, способное менять фазу электрона (или любой другой заряженной частицы) на другую фазу. Пробившись сквозь математические дебри, он обнаружил, что это и есть электромагнитное поле. Такое странное предположение - что электроны с одной фазой можно превратить в электроны с другой — стало основой
1 Фаза— это что-то вроде кадровой синхронизации на старом телевизоре. Картинку все равно можно различить, даже если она чуть повернута.
для того, чтобы предсказать все, что касается света. Если бы Фейнман проделал те же вычисления на сорок лет раньше, то предсказал бы фотоны до того, как Эйнштейн доказал, что они существуют.
Мы полностью согласны, что такой подход, получивший название «квантовая электродинамика», представляется абсолютно надуманным. У нас нет ни малейших представлений о том, почему Вселенная решила обзавестись физическими законами, построенными так, чтобы для них были справедливы аргументы, основанные на симметрии. Но это факт — аргументы справедливы.
Именно в этом случае физики и вспоминают о своей старинной подружке — симметрии. Может быть, если этот подход годится для одной из фундаментальных сил, он сгодится и для остальных? На первый взгляд электроны и нейтрино не слишком похожи друг на друга. Во-первых, электроны заряжены отрицательно, а нейтрино электрически нейтральны. С точки зрения электромагнетизма они вообще очень разные. Хотя обе частицы крайне легки, нейтрино настолько малы, что физики долгое время считали, будто у них вообще нет массы.
Однако у электронов и нейтрино явно есть нечто общее. Если в результате реакции появляется нейтрино, можете смело ставить последний доллар за то, что в этом замешан электрон. Поэтому, вероятно, эти частицы в чем-то симметричны, только симметрия очень слабая. Гипотеза заключается в том, что существует слабое поле, а на самом деле целых три, которое способно превратить электрон в нейтрино и наоборот, или превратить u-кварк в d-кварк, или позволить нейтрино разбегаться друг от друга. Маленькие «кусочки» этого поля можно засечь детектором — это частицы W и Z
Мы могли бы проделать примерно такие же или гораздо более сложные логические выкладки и выявить качества глюонов, носителей сильного взаимодействия, или гипотетического гравитона, носителя гравитации. Но мы этого делать не будем. Нас (как и исследователей, работающих на БАК) интересует разгадка тайны слабого взаимодействия. Формулы слабого взаимодействия, которые получаются, когда мы проделываем вычисления, основанные на симметрии, оказываются почти идеально точными — как и в случае с электромагнетизмом.
Почти.
В главе 1 мы видели другую форму симметрии. Тогда мы ее так не называли, но отметили, что вся физика Вселенной имеет одинаковый смысл, когда вы стоите неподвижно или двигаетесь равномерно и прямолинейно. Кроме того, мы видели, что скорость частиц, очевидно, менялась в зависимости от того, двигаетесь вы или сохраняете неподвижность. С одним исключением: частицы, лишенные массы, всегда двигаются со скоростью света.
Очевидно, в частицах, лишенных массы, есть что-то особенное, и из этого должно следовать, согласно нашим симметрическим аргументам, что все частицы-переносчики должны быть лишены массы. Фотоны и глюоны именно таковы. Хотя мы так и не получили гравитон, тот факт, что гравитация распространяется со скоростью света, означает, что гравитоны должны быть тоже лишены массы.
С другой стороны, частицы W и Z обладают массой, и еще какой[64]. Они примерно в 100 раз массивнее протона. С точки зрения математики нужно здорово повозиться с формулами, чтобы с этим разобраться.
V. Почему я не могу сбросить вес (или массу) до нуля?Насколько мы понимаем, аргументы, основанные на симметрии, о которых мы говорили выше, и в самом деле описывают фундаментальные уравнения Вселенной. Частицы действительно способны превращаться друг в друга. Если эта догадка верна, то мы могли бы предсказать каждую из фундаментальных сил, существование электронов и нейтрино, различные разновидности кварков и так далее.
Но мы этого не можем. Главная проблема — это масса, она словно борец сумо на тренажере «Кузнечик». Массы должны быть лишены не только частицы W и Z. Если бы мы начинали с нуля, создавая самую простую из возможных моделей Вселенной, мы бы предположили, что кварки, электроны и нейтрино тоже должны быть лишены массы. А у них масса есть.
Большинство популярных книг по физике говорит о концепциях наподобие «спонтанного нарушения симметрии» и других технических терминах, цель которых — описать массу через реальные частицы. А на самом деле эти концепции — не более чем условное описание, при помощи которого описывается математика, которая (гм!) отлаживает уравнения, чтобы они предсказывали именно то, что мы наблюдаем на самом деле.
Так далеко мы заходить не хотим. В этом нет ничего нечестного. Более того, это и есть физика высшего сорта. Вы придумываете теорию, Вселенная не соответствует вашим предсказаниям, поэтому вы придумываете новый инструмент, чтобы подправить математику. Например, кварки поначалу были придуманы как математическое допущение, а потом оказалось, что они и вправду существуют.
Было бы глупо описывать математику, которая требуется, чтобы обойти препятствия, с которыми мы до сих пор столкнулись. Было бы отнюдь не глупо, если бы мы подвели итог. В 1960-х годах Питер Хиггс из Эдинбургского университета предположил, что во Вселенной существует еще одно поле — кроме тех полей, о которых мы уже успели поговорить. Назвали его весьма свежо и оригинально — « поле Хиггса». Поле Хиггса имеет одно радикальное отличие от всех тех полей, о которых мы упоминали: оно не несет силы.
Поле Хиггса пронизывает всю Вселенную. Вы в нем так и купаетесь. Но почему же мы его не замечаем, если оно нас окружает? Что оно делает, это поле Хиггса? Попробуем объяснить предельно просто: представьте себе, что это поле — что-то вроде густого меда. Доложите кварк в большое ведро, полное поля Хиггса, и подтолкните его. Что будет? Толкать кварк, взаимодействующий с полем Хиггса, труднее, чем вы думали. С физической точки зрения чем труднее что-то двигать, тем оно массивнее. То есть поле Хиггса «придает» частицам массу.
Мы бы не хотели слишком долго развивать эту аналогию. Если бы поле Хиггса действительно было похоже на густой мед, то частица, придя в движение, начинала бы потом тормозиться. А этого явно не происходит. И все же в основном картина состоит в том, что, подобно тому как электромагнитное поле создает взаимодействие, которое двигает заряженные частицы, поле Хиггса создает взаимодействие, которое придает частице массу.
Все это кажется чистой воды умствованием, верно?
Но дело отнюдь не в том, что нервный физик хватается за соломинку. Мы уже упоминали гипотезу о том, что разнообразные силы во Вселенной — всего лишь разные аспекты одной-единственной силы. Например, когда-то считалось, что электричество и магнетизм — совершенно разные явления, пока в 1866 году Джеймс Клерк Максвелл не показал, что это просто разные аспекты одного и того же электромагнитного взаимодействия.
С тех самых пор физики пытаются показать, что оставшиеся четыре силы — это на самом деле три, две или в идеальном случае одна. Что же это означает? Ведь фундаментальные силы и в самом деле кажутся очень разными. Сегодня так и есть, однако, как выясняется, все зависит от того, достаточно ли Вселенная разогрета.
В 1961 году Шелдон Глэшоу, Стивен Вайнберг и Абдус Салам показали, что электромагнетизм и слабое взаимодействие — это одно и то же. На первый взгляд это смелое заявление. Различия между электромагнетизмом и слабым взаимодействием бросаются в глаза. Частица-переносчик у электромагнетизма не имеет массы, а слабые взаимодействия происходят через частицы которые очень и очень тяжелы. В результате электромагнитные взаимодействия могут распространяться на большие расстояния, а слабые взаимодействия — только на очень близкие.