- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Власть роботов. Как подготовиться к неизбежному - Мартин Форд
Шрифт:
Интервал:
Закладка:
Многие наиболее многообещающие и хорошо финансируемые возможности на стыке химии и искусственного интеллекта связаны с разработкой новых лекарств. По одному отчету, на апрель 2020 года насчитывалось не менее 230 стартапов, использовавших ИИ для поиска новых лекарственных средств[110]. Дафна Коллер, профессор Стэнфорда и сооснователь онлайновой образовательной платформы Coursera, — один из ведущих мировых экспертов по применению машинного обучения в биологии и биохимии. Коллер также является основателем и гендиректором insitro, стартапа из Кремниевой долины, основанного в 2018 году и привлекшего более $100 млн на поиск новых лекарств с помощью машинного обучения. Повсеместное замедление технологических инноваций, поразившее американскую экономику в целом, особенно очевидно в фармакологии. Коллер сказала мне следующее:
Проблема в том, что создание новых лекарств постоянно усложняется: уровень успешности клинических испытаний находится ближе к середине 10 %-ного диапазона; затраты на исследования до уплаты налогов при разработке нового лекарственного средства (с учетом неудачных попыток) превышают $2,5 [млрд]. Рентабельность инвестиций в создание лекарств линейно уменьшается с каждым годом и, по некоторым оценкам, станет нулевой еще до 2020 года. Одна из причин заключается в том, что разработка лекарств принципиально усложнилась: многие (если не все) «низко висящие плоды» — иными словами, лекарства, значимые для больших популяций, — уже сорваны. Поэтому на следующем этапе разработки лекарств нам придется сосредоточиться на более специализированных препаратах, действенность которых может зависеть от конкретных условий и которые предназначаются лишь определенной подгруппе пациентов[111].
insitro и его конкуренты рассчитывают с помощью искусственного интеллекта быстро выявлять перспективные рецептуры, которые могут стать новыми лекарствами, и таким образом сильно снизить затраты на разработку. По словам Коллер, открытие лекарственного средства — это «долгий путь, на котором вас ждет множество развилок» и «99 % дорог ведут в тупик». Если искусственный интеллект будет «более-менее верным компасом, это невероятно повысит шансы на успешное завершение процесса»[112].
Применение подобного подхода уже окупается. В феврале 2020 года исследователи из МТИ объявили об открытии с помощью глубокого обучения эффективного нового антибиотика. Созданная исследователями ИИ-система способна перелопатить информацию о свойствах сотни с лишним миллионов химических соединений за несколько дней. Новый антибиотик — ученые назвали его «галицин» в честь HAL, искусственного интеллекта из фильма «Космическая одиссея 2001 года», — оказался смертельным практически для всех видов бактерий, на которых его испытывали, включая штаммы, резистентные к существующим препаратам[113]. Это принципиально важно, поскольку медицинское сообщество давно предупреждает о скором кризисе, вызванном лекарственно-устойчивыми бактериями — эдакими «супербактериями», которые уже стали бичом многих больниц. Из-за высокой стоимости создания и относительно низкой прибыли очень мало антибиотиков находится сейчас в процессе разработки. Новые лекарства, которым все же удается проходить через сложные и дорогостоящие процессы испытаний и одобрения регулирующими органами, представляют собой в основном разновидности существующих антибиотиков. В отличие от них, галицин воздействует на бактерии принципиально иным образом и, судя по результатам экспериментов, может быть менее чувствительным к мутациям, из-за которых антибиотики утрачивают со временем свою эффективность. Иными словами, искусственный интеллект нашел нестандартное решение, что критически важно для значимой инновации.
Еще одно достижение, о котором также было объявлено в начале 2020 года, принадлежит британскому стартапу Exscientia, использовавшему машинное обучение при поиске новых лекарств для лечения обсессивно-компульсивного расстройства. По сообщению компании, начальный этап разработки занял всего год (что примерно в пять раз меньше, чем при использовании традиционных методов), и это первое открытое ИИ лекарственное средство, проходящее клинические испытания[114].
Как было показано в главе 1, особенно примечательным достижением в применении искусственного интеллекта в биохимических исследованиях стал прорыв DeepMind, обнародованный в ноябре 2020 года, — предсказание конфигурации структуры при сворачивании белка. DeepMind не пыталась открыть какое-то лекарство, а использовала свою технологию в целях изучения процессов на фундаментальном уровне. В конце 2018 года DeepMind представила более раннюю версию своей системы AlphaFold на проводимом раз в два года всемирном конкурсе по прогнозированию структуры белка CASP (Critical Assessment of Structure Prediction). Команды со всего мира с помощью разнообразных методов, на основе как вычислений, так и просто интуиции, пытались предсказать, какую форму примет белок. AlphaFold победила в 2018 году с большим отрывом, но, несмотря на превосходство над конкурентами, сумела правильно предсказать структуру только 25 белковых последовательностей из 43. Иными словами, эта предварительная версия AlphaFold еще не была достаточно точной, чтобы стать действительно полезным инструментом исследования[115]. Всего за два последующих года DeepMind сумела настолько усовершенствовать свою технологию, что ряд ученых объявили проблему прогнозирования белковой структуры «решенной». Я считаю это ярчайшим свидетельством того, что применение искусственного интеллекта для решения конкретных задач будет развиваться очень быстро.
Помимо использования машинного обучения для открытия новых лекарств и других химических соединений самым многообещающим применением искусственного интеллекта в научном поиске может стать усвоение и понимание постоянно растущего объема опубликованных исследований. Только в 2018 году в 40 000 с лишним журналов вышло больше 3 млн научных статей[116]. Осмысление информации в подобных масштабах намного превосходит возможности разума любого человека, и искусственный интеллект, похоже, единственный имеющийся у нас инструмент, способный обеспечить более-менее целостное ее восприятие.
Системы обработки естественного языка на основе новейших достижений в области глубокого обучения используются для того, чтобы извлекать информацию, выявлять неочевидные закономерности в исследованиях и в целом устанавливать концептуальные взаимосвязи, которые в ином случае могут остаться незамеченными. Разработанная IBM технология Watson остается одним из важных игроков в этой сфере. Другой проект, Semantic Scholar, был начат Институтом искусственного интеллекта Пола Аллена из Сиэтла в 2015 году. Semantic Scholar позволяет использовать ИИ для поиска информации в более чем 186 млн опубликованных статей практически во всех областях научного знания[117].
В марте 2020 года Институт Аллена совместно с консорциумом других организаций, включая Microsoft, Национальную медицинскую библиотеку США, Управление научно-технической политики Белого дома, подразделение AWS компании Amazon, приступил к созданию COVID-19 Open Research Dataset — базы