Путевые заметки рассеянного магистра - Владимир Левшин
Шрифт:
Интервал:
Закладка:
Собственно, карусель была двойная — одна внутри другой, но вращались они вокруг общего центра. Кроме того, между двумя каруселями была высокая сплошная цилиндрическая стена с одной только ма-а-ленькой щёлкой. Так что видеть друг друга катающиеся на разных каруселях могли только тогда, когда пролетали одновременно мимо щели.
Единичка решила прокатиться на большем круге и вскарабкалась на длинноногого гепарда, я же выбрал меньший круг и уселся на черепаху — она большая и очень удобная. К счастью, гепард и черепаха находились как раз против щели, так что, пока карусель стояла на месте, мы с Единичкой хорошо видели друг друга.
Но вот карусель завертелась. Радиус окружности, по которой вращалась Единичка, был в три раза больше, чем радиус моей. Значит, догнать меня не удастся: хотя скорость гепарда была в два раза больше скорости черепахи, но я все равно крутился быстрее.
Совсем забыл сказать, что задача наша состояла в том, чтобы улучить момент, когда мы с Единичкой снова окажемся точно против щели, и успеть в это время крикнуть: «Привет!» Кто раньше крикнет, тот, стало быть, более внимательный, он и проигрывает. Да, да, внимательные на этом симпозиуме проигрывали, а рассеянные выигрывали. И раз так, стало быть, выиграть мне не удастся. Я это сразу понял. Так оно и вышло. Через каждые несколько секунд я слышал Единичкин выкрик: «Привет!», а сам не кричал ни разу. По-моему, мы с Единичкой вообще не оказывались одновременно против щели, и озорница кричала «Привет!» когда вздумается.
В конце концов у меня так закружилась голова, что я вместо «Привет!» закричал «Караул!», и карусель остановили.
После этого мне довольно трудно было сосредоточиться на втором вопросе повестки дня, который тоже был довольно-таки головокружительным. Меня усадили в качели-лодочку, оттянули бог знает на какую высоту и заставили задумать и запомнить какое-нибудь целое число — от единицы до миллиона и даже больше. А затем велели продолжать счёт в уме, называя после каждого нового взмаха качелей следующее число. Вот, например, я задумал число 15. Взмах — 16, взмах — 17, взмах — 18, и так до тех пор, пока не зажжётся красная лампочка. Последнее число надо тоже запомнить.
А дальше следовало самое трудное. Оба числа, первое и последнее, надо — опять-таки в уме — возвести в квадрат, а потом вычислить среднее арифметическое и среднее геометрическое этих квадратов… И все это во время стремительного полёта! Под конец вы должны вычислить, на сколько среднее арифметическое больше среднего геометрического. После этого качели (слава богу!) останавливаются и ваш партнёр должен отгадать: какой вы получили результат, то есть чему равна разность между средним арифметическим и средним геометрическим квадратов двух чисел — задуманного и последнего.
Я нарочно выбрал в партнёры Единичку, чтобы не позорить коллег по симпозиуму. Ведь угадать такое все равно невозможно!
И как же я удивился, когда Единичка в точности назвала число, которое я получил. Угадала, наверное. Ей, как всегда, везёт! Однако Единичка заявила, что вовсе не угадывала, а подсчитала. Она, видите ли, заметила, сколько взмахов сделала моя лодочка, пока не загорелся красный сигнал… Ерунда какая-то! При чём здесь сигнал? Впрочем, попробуйте-ка что-либо понять после двух подобных аттракционов…
А тут ещё подоспел третий вопрос повестки дня. Правда, меня заверили, что он будет всего лишь продолжением второго, но я все равно наотрез отказался снова лезть на эти чёртовы качели. Никто, впрочем, этого и не требовал. Вместо качелей мне предложили сесть в «чёртово колесо», и там-то я должен был обнаружить всю меру своей рассеянности и ненаблюдательности.
И вот в кабине колеса я поднимаюсь в небеса… Простите, кажется, я заговорил стихами… Сверху глазам моим открывается великолепное зрелище. Представьте себе гигантское спортивное поле, только не прямоугольное, а круглое. Огромный правильный круг разделён красной лентой на две равные части и сверх того опоясан четырьмя синими канатами. Картина, достойная кисти Айвазовского! Не успел я налюбоваться ею всласть, как по радио объявили:
«Внимание! Проверьте ваш глазомер. Внизу, под вами, равнобедренная трапеция, описанная около круга, разделённого пополам красной лентой. Быстро укажите два отрезка, чьи средняя арифметическая и средняя геометрическая величины изображены на этом же чертеже. Время — 5 секунд. Начали!»
Вот так история! Как назло, я забыл свои очки в рюкзаке, а найти с этакой высоты среднее арифметическое и геометрическое без оптики мне с моим зрением нечего пытаться. Вот Единичка — другое дело: она тотчас начертила что-то на бумажке и сказала: «Вот они!» Впрочем, кто знает, не напутала ли она чего-нибудь?
На этом первое заседание симпозиума закончилось. Второе… Впрочем, второго не последовало. Как так? Сейчас узнаете.
Покинув «чёртово колесо» и очутившись наконец внизу, я до того обрадовался, что изо всех сил топнул ногой, как бы проверяя твёрдость почвы. И тут раздался какой-то странный треск. Вслед за этим стремительно взвыла сирена, и все окружающие куда-то помчались, жестами приглашая нас следовать за собой. К сожалению, я их не послушался. Не побежала за ними и Единичка, которая ни за что не хотела оставлять меня одного. Добрая девочка, — у неё были основания за меня опасаться. Оказывается, когда я топнул ногой, льдина, на которой расположено Рио-де-Магистро, треснула, и нас понесло в Ледовитый океан, к Северному полюсу!
Хорошо, что при мне осталось охотничье ружьё, подаренное бароном Мюнхгаузеном. Сейчас я в него заложу это послание и выстрелю им на Большую землю. Нет, не для того, чтобы за нами послали спасательную экспедицию (уверен, что мы с Единичкой сумеем выбраться из ледового плена сами), а просто для объективной научной информации. Так что мужайтесь, друзья, и пожелайте нам счастливого возвращения на родину!
ВОСЕМНАДЦАТОЕ ЗАСЕДАНИЕ КРМ
началось очень грустно. Последнее письмо Магистра пришло уже несколько месяцев тому назад, но продолжения не следовало. Неужели нашего путешественника действительно унесло к Северному полюсу и затёрло льдами? А Единичка? Она ведь тоже осталась на расколовшейся льдине! Неужели и ей суждено погибнуть? Мы просто терялись в догадках, и, по правде говоря, нам было не до разбора каких-то ошибок…
Но вот когда надеяться вроде было уже не на что, клуб КРМ все же собрался, чтобы обсудить драматический, и, увы, последний рассказ рассеянного математика.
Ясным апрельским утром мы вышли на Фрунзенскую набережную. Как на грех, на Москве-реке начинался ледоход. Мы тотчас представили себе наших друзей, одиноких, затерянных во льдах, и от этого нам стало ещё грустнее. Все уныло смотрели на ту сторону реки, где расположен Парк культуры и отдыха. Он был ещё закрыт.
На голубом небе чётко вырисовывалось неподвижное «чёртово колесо», тоже напоминавшее нам о пропавших путешественниках.
Настроение было самое похоронное. И всё же стоило нам заняться Магистровыми нелепостями, как на лицах заиграли улыбки и заседание пошло как по маслу.
— Итак, — начал президент, — попрошу разъяснить, как это Магистр умудрился вовремя попасть на симпозиум в Рио-де-Магистро?
— Достаточно внимательно прочитать его рассказ, — сказала Таня, — и все станет ясно. Магистр и Единичка летели на восток в сверхзвуковом самолёте и пересекли Берингов пролив. Так ведь?
— Так, — подтвердил Нулик. — Ну и что?
— А то, что в Беринговом проливе проходит та самая граница — линия смены дат, — по одну сторону которой уже наступил новый день, а по другую ещё продолжается вчерашний. Значит, пролетая Берингов пролив, наши путешественники из среды попали… во вторник!
— Я ещё в прошлый раз догадался, в чём дело, — похвастался Сева. — Ведь телеграмму-то Магистру прислал Паспарту! А Паспарту — это же слуга Филеаса Фогга, героя романа Жюля Верна «Вокруг света в 80 дней»!
— Э! — обрадовался президент. — Это и я читал. Этот самый Филеас Фогг чуть не проиграл пари, думая, что опоздал в свой клуб на один день. А оказалось…
— А оказалось, что он не учёл того же, что и наш Магистр, — закончил Сева.
— Ясно! — заключил президент. — Вопрос исчерпан. А вот насчёт возраста деда буду исчерпывать я сам. Магистр много путешествовал, а у нас в Карликании, как видно, не побывал. Иначе ему бы любой из наших Нуликов объяснил, чем отличается разность двух чисел от их частного.
И президент очень обстоятельно (научился-таки!) разъяснил, в чём это отличие заключается.
— Если возраст внука обозначить буквой «икс» x, — сказал он, — то возраст деда будет равен двум иксам (2x): ведь при встрече с Магистром дед был в два раза старше внука. А вот тридцать лет назад внуку было (x-30) лет, а деду (2x-30) лет. Но так как тогда дед был в пять раз старше внука, то можно составить простенькое уравнение:
2x-30 = 5(x-30).
А дальше проще простого: стоит решить это уравнение, как сразу выяснится, что x=40, то есть внуку 40 лет, ну а деду, естественно, 80.