- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Самое грандиозное шоу на Земле - Ричард Докинз
Шрифт:
Интервал:
Закладка:
Что такое дендрохронология
Все прекрасно, однако не многие из современных нам деревьев росли при Тюдорах, тем более в каменном веке или еще раньше. Существуют деревья — остистые сосны, мамонтовы деревья, — которые живут тысячелетиями, но подавляющее большинство используемых для получения древесины деревьев гибнет в первое столетие их жизни. Как собрать коллекцию узоров древесных колец для более древних времен? Для времен столь давних, что ни одна из живущих ныне остистых сосен их не упомнит? Думаю, вы знаете ответ: перекрывания. Веревка может быть тридцати метров длины, но ни одно из ее волокон не достигает этой длины. Итак, берем последовательности годичных колец, время образования которых известно по современным деревьям. Затем определяем характерную последовательность колец, восходящую к молодости самых старых из современных деревьев, и ищем аналогичную последовательность ближе к концу жизни давно погибших деревьев. И так далее. Теоретически можно проложить таким образом путь в прошлое на миллионы лет, используя окаменелые остатки ископаемых деревьев, хотя на практике дендрохронологический метод применяется в масштабе нескольких тысячелетий. Самое увлекательное в дендрохронологии то, что вы можете установить дату с точностью до года, по крайней мере теоретически, вне зависимости от того, жило это дерево век назад или сто миллионов лет назад. Вы можете точно сказать, что это кольцо в окаменелом дереве юрского периода появилось ровно 257 лет спустя после этого кольца в другом дереве той же эпохи! Если бы существовало достаточное количество окаменелых лесов, чтобы можно было проложить надежный путь в прошлое, мы могли бы сказать, что это не просто позднеюрский возраст, а что это дерево жило точно в 151432657 году до нашей эры! К сожалению, у нас нет непрерывной цепи, и дендрохронология позволяет нам уйти в прошлое только на 11 тысяч 500 лет. Тем не менее, что поразительно, будь на свете достаточно окаменелых древесных остатков, мы могли бы устанавливать дату с точностью до года на масштабе в сотни миллионов лет.
Годичные кольца деревьев — не единственный метод, позволяющий обеспечить точность датирования до года. Варвы — годичные слои осадков, накапливающиеся в ледниковых озерах. Как и у деревьев, их толщина зависит от условий года, поэтому теоретически к ним можно применять тот же принцип. И у кораллов есть годичные кольца. Они позволяют устанавливать даты древних землетрясений (древесные годичные кольца, кстати, тоже). Большинство других имеющихся в нашем распоряжении методов датирования, включая радиометрические, которыми мы пользуемся на масштабах миллионов или миллиардов лет, точны только в пределах погрешности, величина которой пропорциональна измеряемому времени.
Радиоактивные «часы»
Теперь перейдем к радиометрическому датированию. Нам есть из чего выбирать: радиоактивные «часы» отмеряют время от веков до миллиардов лет. У каждых есть погрешность, обычно не превышающая 1 %. Таким образом, если вы измеряете возраст горной породы в миллиардах лет, то должны принимать в расчет погрешность в десятки миллионов лет. Если определяете возраст породы, которой сотни миллионов лет, погрешность не будет превышать миллиона лет. Если породе десятки миллионов лет, делайте поправку на сотни тысяч лет.
Чтобы понять, как работают радиоактивные «часы», необходимо прежде узнать, что такое радиоактивный изотоп. Материя состоит из химических элементов, как правило, химически связанных с другими элементами. Всего существует около ста элементов (чуть больше, если прибавить элементы, которые существуют только в лабораторных условиях, и чуть меньше, если сосчитать только элементы, встречающиеся в природе): углерод, железо, азот, алюминий, магний, фтор, аргон, хлор, натрий, уран, свинец, кислород, калий, олово и так далее. Атомная теория строения вещества, с которой, думаю, согласны даже креационисты, утверждает, что каждому элементу соответствует собственный атом, являющийся самой маленькой частицей, на которую возможно разделить элемент без утраты им своих свойств. Как выглядит атом свинца, меди или углерода? Безусловно, не как медь, свинец или уголь. Он вообще никак не выглядит, поскольку слишком мал для того, чтобы броситься вам в глаза, каким бы мощным микроскопом вы ни пользовались. Поэтому мы прибегаем к аналогиям или моделям. Самая известная была предложена великим датским физиком Нильсом Бором. Модель Бора, сегодня уже устаревшая, похожа на Солнечную систему. Вместо Солнца — ядро, вокруг которого обращаются электроны, играющие роль планет. Как и в Солнечной системе, практически вся масса атома содержится в ядре («Солнце»), а практически весь объем занят пространством между электронами («планетами»). Каждый из электронов в сравнении с размером ядра пренебрежимо мал, а расстояние от него до ядра намного больше размеров самого ядра. Известная аналогия — ядро атома, как муха в центре футбольного стадиона. Тогда ядро соседнего атома будет мухой в центре соседнего стадиона. Электроны кружат по орбитам вокруг мух, они меньше самых мелких мошек, слишком маленькие для того, чтобы увидеть их в одном масштабе с мухами. Когда мы берем в руки кусок металла или камня, мы на самом деле смотрим на предмет, состоящий в основном из пустоты. Мы ощущаем его как плотное и непрозрачное тело потому, что наши органы чувств и мозг находят удобным воспринимать этот объект как твердый и непрозрачный. Наш мозг находит это удобным потому, что мы не можем пройти сквозь камень. «Твердый» — это характеристика, которую мы присваиваем веществам и материалам, через которые не можем пройти или в которые не можем провалиться из-за электромагнитных взаимодействий между их атомами. «Непрозрачный» — воспринимаемая нами картина света, отражающегося от поверхности объекта и не проходящего сквозь него.
Согласно модели Бора, в состав атома входят три вида частиц. С электронами мы уже знакомы. Две другие частицы, существенно превосходящие по размеру электрон, но по-прежнему настолько малые, что мы не можем увидеть их, называются протон и нейтрон. Они почти одинакового размера. Число протонов в атоме любого химического элемента постоянно и равно числу электронов. Оно называется атомным числом и является уникальным свойством химического элемента. Нет никаких промежутков в последовательности атомных чисел в знаменитой периодической таблице элементов[52]. Каждый номер в ряду соответствует одному и только одному химическому элементу. Элемент с атомным числом 1 — водород, 2 — гелий, 3 — литий, 4 — бериллий, 5 — бор, 6 — углерод, 7 — азот, 8 — кислород, и так далее.
Протоны и электроны несут электрические заряды противоположных знаков — мы называем их положительными и отрицательными. Эти заряды становятся важными, когда элементы составляют химические соединения. Основными проводниками взаимодействий являются электроны. Нейтроны в атомах связаны в ядре с протонами. В отличие от протонов, они не имеют заряда и не участвуют в химических реакциях.
Протоны, нейтроны и электроны любого химического элемента ничем не отличаются от таких же частиц, составляющих атомы других элементов. Никаких «золотых» протонов, «медных» электронов и «калиевых» нейтронов не существует. Атом меди делает атомом меди только наличие 29 протонов и электронов. Все, что мы привыкли считать свойствами меди, — вопрос химии. Химия — нескончаемый танец электронов. Все химические реакции — взаимодействие атомов при помощи электронов. Химические связи сравнительно легко образуются и распадаются, поскольку обмениваются или отделяются только электроны. Силы взаимного притяжения, образующие ядро атома, преодолеть существенно сложнее. Вот почему термин деление атома имеет зловещую окраску. Однако оно возможно, и в результате начинаются ядерные реакции — в противоположность химическим. На этом и основана работа радиоактивных «часов».
Масса электрона пренебрежимо мала, поэтому общая масса атома — его массовое число — равна суммарному числу протонов и нейтронов в ядре. Как правило, массовое число чуть более чем вдвое превосходит порядковый номер элемента, поскольку нейтронов обычно чуть больше, чем протонов. В отличие от числа протонов, число нейтронов не определяет, к какому элементу относится атом. Атомы любого элемента могут существовать в различных вариантах, именуемых изотопами, у которых одинаковое число протонов, но разное число нейтронов. У некоторых элементов, например фтора, имеется только один природный изотоп. Фтор — элемент с порядковым номером 9 и массовым числом 19. Отсюда следует, что ядро атома фтора состоит из девяти протонов и десяти нейтронов. Другие элементы, однако, имеют множество изотопов. У свинца пять широко распространенных изотопов. Все они имеют одно и то же число протонов и электронов (82 — атомное число свинца) и массовое число (от 202 до 208). Углерод имеет три природных изотопа. Углерод-12 — самый распространенный, он имеет по шесть протонов и нейтронов. Реже встречается углерод-13. Углерод-14 тоже редок, но его все же достаточно для использования в датировании образцов органического происхождения.

