- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Высший замысел - Стивен Хокинг
Шрифт:
Интервал:
Закладка:
Диаграммы Фейнмана. Ричард Фейнман ездил на примечательном автофургоне, разрисованном диаграммами, названными его именем. Эти изображения были сделаны как иллюстрация обсуждавшихся выше диаграмм. Фейнман умер в 1988 году, но фургон все еще цел — он хранится неподалеку от Калифорнийского технологического института, в Южной Калифорнии.
Успех перенормировки в КЭД способствовал попыткам поиска квантовополевых теорий для остальных трех фундаментальных взаимодействий (сил) в природе. Но деление природных сил на четыре класса искусственно и, вероятно, явилось следствием недостатка наших знаний о них. Поэтому ученые стали искать так называемую теорию всего, которая объединила бы все четыре класса в единый закон, сочетающийся с квантовой теорией. Для физики это своего рода Священный Грааль — легендарная чаша, олицетворяющая заветную цель.
Одно из указаний на то, что объединение — это правильный подход, пришло из теории слабого ядерного взаимодействия. Квантовая теория поля, описывая слабое ядерное взаимодействие как таковое, не может быть перенормирована; то есть она имеет бесконечности, которые не могут быть уравновешены вычитанием конечного числа величин, таких как масса и заряд. Однако в 1967 году пакистанский физик Абдус Салам (1926–1996) и американский физик Стивен Вайнберг (род. 1933) независимо друг от друга предложили теорию, в которой электромагнетизм был объединен со слабым ядерным взаимодействием, и обнаружилось, что это объединение преодолевает проблему бесконечностей. Объединенную силу назвали электрослабой силой. Ее теория может быть перенормирована, и по этой теории были предсказаны три новые частицы, получившие обозначения W+, W- и Z0. Свидетельство существования Z0 было найдено в 1973 году учеными из Европейской организации по ядерным исследованиям (СЕКИ) в Женеве. В 1979 году Саламу и Вайнбергу была присуждена Нобелевская премия[3], хотя непосредственных наблюдений частиц W и Z не имелось вплоть до 1983 года.
Сильное ядерное взаимодействие может быть самостоятельно перенормировано в теории, которая называется квантовой хромодинамикой (КХД). Согласно КХД, протон, нейтрон и многие другие элементарные частицы материи состоят из кварков. Кварки обладают специфическим свойством, которое физикам пришлось назвать цветом. От этого и возник термин «хромодинамика», хотя цвет кварков просто удобное обозначение, не имеющее никакого отношения к видимому цвету. Кварки бывают трех так называемых цветов: красного, зеленого и синего. Кроме того, каждый кварк имеет соответствующую ему античастицу, а цвета этих частиц называются антикрасный, антизеленый и антисиний. Идея состоит в том, что только бесцветные сочетания могут существовать как свободные частицы. Есть два пути получить такие «бесцветные» сочетания кварков. Цвет и его антицвет уничтожают друг друга, так что кварк и антикварк образуют бесцветную пару — нестабильную частицу мезон. То же происходит, когда смешиваются три цвета (или антицвета), приводя в результате к отсутствию цвета. Три кварка, по одному каждого цвета, образуют стабильную частицу барион, примерами которого служат протон и нейтрон (а три антикварка образуют античастицу для бариона). Протоны и нейтроны — это барионы, составляющие ядро атома и основу всей обычной материи во Вселенной.
Барионы и мезоны. Считается, что барионы и мезоны состоят из кварков, связанных вместе сильным ядерным взаимодействием. Когда такие частицы сталкиваются, они могут обмениваться кварками, но наблюдать отдельные кварки невозможно.
КХД также обладает свойством, которое называют асимптотической свободой. Этого свойства мы коснулись в главе 3, хотя и не употребляли данного термина. Асимптотическая свобода означает, что сильные ядерные взаимодействия между кварками малы в тех случаях, когда кварки плотно прижаты друг к другу, но они возрастают, если кварки попытаться разъединить, — тогда они ведут себя так, будто связаны резиновой лентой. Асимптотическая свобода объясняет, почему мы не можем видеть отдельные кварки в природе и не могли получить их в лаборатории. И все же, хотя и нет возможности наблюдать отдельные кварки, мы принимаем эту модель, поскольку она очень хорошо объясняет поведение протонов, нейтронов и других частиц материи.
В 1970-е годы, после объединения слабого ядерного и электромагнитного взаимодействий, физики стали искать способ, как включить в эту теорию и сильное ядерное взаимодействие. Существует несколько так называемых теорий Великого объединения (ТВО), которые объединяют сильное взаимодействие со слабым и с электромагнитным, но в большинстве своем они предсказывают, что протоны — то, из чего мы созданы, — должны распадаться в среднем примерно через 1032 лет. Это очень долгое время жизни, учитывая, что возраст Вселенной всего около 1010 лет. Но в квантовой физике, если мы говорим, что средняя продолжительность жизни частицы равна 1032 лет, то не имеем в виду, что большинство частиц живет примерно 1032 лет: одни из них — чуть больше, другие — чуть меньше. Мы только хотим сказать, что ежегодно каждая частица может разрушиться с вероятностью один шанс из 1032. Это значит, что если вы наблюдаете за емкостью, в которой находится 1032 протонов на протяжении всего нескольких лет, то должны увидеть, как распадется несколько протонов. Изготовить такую емкость не так уж трудно, поскольку 1032 протонов содержится всего в тысяче тонн воды. Ученые провели такие эксперименты. Оказалось, что выявить распады протонов и выделить их среди похожих событий, которые вызваны космическими лучами, непрерывно льющимися на нас из космоса, — дело непростое. Чтобы минимизировать помехи, эксперименты проводились глубоко под землей, например в шахте горнометаллургической компании «Камиока» в Японии, на глубине 3281 фут под горой, что в определенной степени давало защиту от космических лучей. В результате наблюдений, проведенных в 2009 году, исследователи пришли к выводу: если протоны вообще распадаются, то время их жизни превышает 1034 лет, что стало плохой новостью для теорий Великого объединения.
Поскольку с помощью других экспериментов также не удалось обнаружить свидетельств в поддержку ТВО, большинство физиков стало придерживаться особой теории, которую назвали Стандартной моделью. Она включает в себя единую теорию электрослабых взаимодействий и КХД в качестве теории сильных взаимодействий. Но в Стандартной модели электрослабые и сильные взаимодействия действуют раздельно и по-настоящему не объединены. Стандартная модель оказалась весьма удачной, она согласуется со всеми имеющимися наблюдениями, но в конечном счете она неудовлетворительна, так как не только не объединяет электрослабые и сильные взаимодействия, но и не охватывает гравитацию.
Может оказаться трудным объединить в одну теорию сильное взаимодействие с электромагнитным и слабым взаимодействиями, но эти проблемы ничто по сравнению с проблемой присоединения гравитационного воздействия к трем другим или даже с созданием отдельной квантовой теории гравитации.
Причина, по которой оказалось так трудно создать квантовую теорию гравитации, имеет нечто общее с принципом неопределенности Гейзенберга, рассмотренным нами в главе 4. Это не очевидно, но оказалось, что, согласно этому принципу, величина поля и скорость его изменения играют ту же роль, что и положение и скорость частицы, то есть чем точнее определено одно, тем менее точно может быть определено другое. Важное следствие из этого заключается в том, что такого образования, как пустое пространство, нет. Это потому, что пустое пространство подразумевает, что оба значения — величина поля и скорость его изменения — строго равны нулю (в противном случае пространство не было бы пустым). А поскольку принцип неопределенности не позволяет ни полю, ни скорости его изменения обладать точным значением, то пространство никогда не бывает пустым. Оно может находиться в состоянии минимальной энергии, которое называется вакуумом, но это состояние подвержено так называемому квантовому дрожанию, или вакуумным флуктуациям, когда частицы и поля то появляются, то исчезают.
«Боюсь, что даже поместив все это в одну рамку, мы не получили единой теории».
Вакуумные флуктуации можно рассматривать как пары частиц, которые в какое-то время появляются вместе, разлетаются, потом соединяются и аннигилируют. На диаграммах Фейнмана они изображаются замкнутыми контурами. Эти частицы называются виртуальными. В отличие от реальных виртуальные частицы нельзя непосредственно наблюдать с помощью детектора частиц. Однако можно измерить их косвенные проявления, такие как небольшие изменения энергии электронных орбит, и эти измерения с высокой степенью точности согласуются с теоретическими предсказаниями. Проблема в том, что у виртуальных частиц есть энергия, а поскольку виртуальных пар бесконечное множество, то они могут обладать бесконечным количеством энергии. В соответствии с общей теорией относительности это означает, что они могут искривить Вселенную до бесконечно малого размера, чего на самом деле не происходит.

