- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Математика нуждается в систематизации - Иван Деревянко
Шрифт:
Интервал:
Закладка:
Например, в сосуд налита вода. Сосуд — координатные оси, вода — числа. Вода вся вытекла из сосуда, ее там нет. Это число ноль (пустое числовое множество). Вода испарилась и пар висит в воздухе. Вода есть, сосуда нет. Это координатный нуль. Сосуд предназначен для воды, но ее там нет. Таков смысл числового нуля. Вода не превращается в сосуд. Ее просто там нет.
Числовая ось начинается с бесконечно малых чисел, содержит единицу и содержит ряд последовательных определенных, неопределенных и бесконечно больших целых чисел, среди которых имеются константы. К константам относятся: единица, максимальные определенное, неопределенное и бесконечно большое числа. Между ними располагаются последовательные ряды соответствующих чисел.
Это как в природе. Объект обладает двумя видами движений: вращательным и поступательным. Если объектов немного и его движение не существенно для человека, то он имеет имя, а если их много, и они в движении стохастически сталкиваются друг с другом, то это уже какая-то неопределенность, имеющая свое название. Неопределенные числа при необходимости можно пересчитать. Если же их пересчитать невозможно, то это уже бесконечно большие числа, которые имеют границу. Считается, что все числа имеют область существования, которая определяется как бесконечность.
Здесь и проявляется различие между понятием «бесконечность» и «бесконечно большое число». Нельзя сказать, что никто не обращал на то внимания. Например, Г. Кантор применял понятия «оконеченной» или актуальной бесконечности. Но многие великие математики прошлого выступали категорически против этих понятий. Поэтому произошла фальсификация этого ключевого момента формирования математики.
Определенные числа являются не совсем определенными. Число в каком-нибудь числовом множестве характеризует какой-то параметр. Но такое же число в другом каком-нибудь числовом множестве, которое не одинаково с предыдущим, тоже характеризует такой же параметр, но его численное выражение не равно предыдущему, поскольку пределы множеств разные. Параметры оказываются несопоставимыми в абсолютных единицах измерения.
Чтобы сделать параметры сопоставимыми, надо параметры выразить в относительных единицах. Для этого текущие значения параметра надо отнести к предельному значению, получив дробное число. Такие числа всегда меньше единицы, приравненным к предельным значениям любых параметров, а потому сопоставимы. Дробные числа являются абсолютно определенными, но за пределами определенности они становятся неопределенными или бесконечно малыми.
Таким образом, числовая ось с нуля начинается и им же заканчивается, что свидетельствует о системном ее характере. Если на одной и той же числовой оси только один нуль, как начало, то два числовых множества при вычитании одинаковых чисел дают нулевую числовую ось с таким количеством нулей, сколько чисел в меньшем множестве. Нули здесь тоже являются числовыми, поскольку образованы двумя числами. Такой же нуль образуется от вычитания одинаковых чисел разных числовых множеств. Это разностный нуль. Он тоже должен иметь обозначение, отличающееся от других нулей.
Любые числа имеют от одного до четырех измерений, поэтому и нули, как начала числовых осей тоже имеют от одного до четырех измерений. Количество измерений определяется количеством числовых осей, исходящих из одного нуля.
Числа бывают не только простыми. Они бывают двойными (комплексы), тройными (векторы), четверными (тензоры). Все они, как и простые, являются целостными, и обладают одинаковыми свойствами. Но внутренние свойства у всех разные.
Комплекс, как целостное число, имеет две составляющих, которые обладают одной особенностью: если одна уменьшается, то другая настолько же увеличивается, а комплекс остается неизменным. Если составляющие равны, то их разность равна нулю и сумма их изменений тоже равна нулю. Это равновесный нуль, который означает устойчивое состояние комплекса. Также, как и комплекс нуль здесь можно сказать двумерный, так как образован двумя парами чисел.
Если множество содержит положительные и отрицательные элементы, то сумма одних и других делает в целом множество того знака, каких элементов больше. Если же их количество равное, то множество имеет нейтральный знак, т. е. нуль. Таких нулей может быть много, например, в разных температурных полях. Но это не тот нуль, который означает пустоту, а нуль, который означает нейтральное значение. Такой же нуль появляется в результате столкновения двух элементов противоположных знаков. При столкновении элементы мгновенно выравниваются и образуется нейтральный элемент.
Векторы, в частности, одномерные, кроме начала числовой оси имеют еще два нуля, образованные при переходе через предельные значения, когда предел превращается в нуль. Тензоры тоже имеют внутренние нули, как нейтральные элементы. Например, при превращении тепловой энергии в магнитную, магнетон содержит два нейтральных теплона.
Таким образом, нули, так же, как и числа, бывают разные, поэтому, считать только, что нуль ничего не содержит, по крайней мере, не корректно.
Некоторые замечания по аксиомам в математике
Вслед за основными понятиями формулируются основные аксиомы, которые принимаются без доказательства. Аксиомами называются исходные или первоначальные предложения, на основе которых доказываются другие предложения в виде теорем. Считается, что в аксиомах утверждается существование некоторого основного объекта или дается описание отношений между основными понятиями. Это соответствует тому, что есть реальные первичные объекты и первичные действия над ними, поэтому аксиомы следует подразделять на аксиомы существования и аксиомы отношений.
Такого подразделения в современных аксиомах не наблюдается. Кроме того, первичные объекты имеют какую-то размерность и форму. Следовательно, аксиомы бывают четырех видов: аксиомы существования, аксиомы отношений, аксиомы размерности и аксиомы формы.
Каждый из этих видов аксиом представляют собой систему. Чтобы сразу можно было отличить одни аксиомы от других, начинаться они должны соответствующим образом. Например, аксиомы существования должны начинаться словом «Существует…». Какую структуру имеют системы аксиом, можно проследить на тех же аксиомах существования.
Аксиомы существования.
1. Аксиомы существования первичных понятий.
а) Существует неопределимое понятие «множество» такое, какое определено как первичное понятие в математике.
b) Существует неопределимое понятие «координатная ось» такое, какое определено как бесконечная область существования множества.
с) Существует неопределимое понятие «нуль» такое, какое определено как начало координатной оси, но числом не является.
d) Существует неопределимое понятие «относительное пространство» такое, какое определено как область существования подчиненного множества.
2. Аксиомы существования определенных чисел.
а) Существует число «нуль» такое, какое определено как начало числовой оси.
b) Существует число 1 такое, какое определено как мера количества элементов множества.
c) Существуют определенные числа n такие, какие больше числа 1.
d) Существует такое число, какое больше всех остальных определенных чисел и определено как их предел.
3. Аксиомы существования неопределенных чисел.
а) Существуют неопределенные числа такие, какие больше предела определенных чисел, но их при необходимости можно пересчитать.
b) Существует такое неопределенное число, какое больше всех остальных неопределенных чисел и определено как их предел.
c) Существуют неопределенные числа такие,

