Рак излечим - Михаил Кутушов
Шрифт:
Интервал:
Закладка:
В связи с этими примерами имеет смысл рассмотреть другие виды симметрии. Упомянутые выше пространственно-временные симметрии условно объединяют одно общее свойство – они являются как бы «внешними» симметриями (огранками) в том смысле, что отражают глубокие свойства структуры пространства-времени, представляющей собой форму существования любого вида материи, и поэтому справедливой для любых мыслимых взаимодействий и физических процессов. Весь физический опыт познания мира показывает отсутствие нарушений инвариантности законов природы относительно указанных пространственно-временных преобразований. В этом уже не только физический, но и философский смысл познания и установления объективности законов природы. Однако во «внешних» симметриях не затрагивается «внутренний мир» физического объекта, и он никак не связан с внешними свойствами. Совершенно иное мы видим в биологических объектах, они связаны и подчиняются закону триединства живых организмов. Этот закон идентичен закону сохранения физических величин.
В природе кроме рассмотренных законов сохранения энергии, импульса и момента импульса существуют и другие законы сохранения, которые выполняются с той или иной степенью общности, в частности, закон сохранения электрического заряда. В физике элементарных частиц, как мы видели, имеются и другие сохраняющиеся (или, по крайней мере, введенные так) величины, подобные электрическому заряду, – барионное число, четность, изоспин, ароматы (странность, очарование, красота и т. д.). Эти, по сути, квантовые числа обусловлены фазовыми преобразованиями волновой функции ψ и в целом не связаны со свойствами пространства-времени. Симметрия играет важную роль в исследовании физики микромира. Наш физик-теоретик А. Мигдал считал, что главными направлениями физики XX века были поиски симметрии и единства картины мира. Сохранение подобных величин, непосредственно не связанных со свойствами пространства-времени, относится к понятию «внутренней» симметрии.
Прежде чем перейти к другим «внутренним» симметриям, остановимся еще на двух видах дискретной симметрии, которые отличаются от рассмотренных «непрерывных» симметрий сдвига и поворота. Это уже давно хорошо известная нам зеркальная симметрия, которая описывается пространственной инверсией, то есть отражением системы координатных осей. Инверсия пространства осуществляется «сразу» (в зеркале), а ее повторное применение возвращает систему в исходное состояние. Это отражение называется операцией изменения «четности» (пример с теннисистом в зеркале). Другой дискретной симметрией является симметрия относительного обращения времени, приводящая к тому, что в симметричной Вселенной законы природы не изменяются при замене направления течения времени на обратное (t= – t и наоборот). Надо полагать, обратное течение не времени, а пространств (авт.). Применение данной симметрии показывает, что направление возрастания времени (движение в одну сторону) не играет существенной роли. С равной вероятностью возможен и обратный процесс. Другими словами, установить путем наблюдения направление развития событий в будущее или в прошлое для равновесной симметричной системы невозможно. Если вы помните, мы приходили к такому же результату для детерминированной механики Галилея – Ньютона в замкнутых системах. Но одновременно мы уже знаем и о существовании «стрелы времени» для открытых неравновесных систем. И это еще раз доказывает, что время все-таки «течет» от прошлого к будущему, и наша Вселенная неравновесна и асимметрична. Это, как мы помним, признаки живого… Заметим, однако, что понятие энтропии неоднозначно применимо к микромиру, и, следовательно, изучая его, нельзя установить направление времени. Дальнейшее расширение количества физических симметрий связано с развитием квантовой механики. Одним из специальных видов симметрии в микромире является перестановочная симметрия.
Исследование реакций с участием элементарных частиц и античастиц, а также процессов их распада привело к открытию некоторых новых свойств симметрии, а именно зарядовой симметрии, или, более точно, зарядовой симметрии частиц и античастиц. При изучении ядерных взаимодействий нуклонов (сильные взаимодействия) было обнаружено, что эти ядерные силы почти не зависят от типа нуклонов, то есть при этих взаимодействиях нет различия между нейтроном и протоном, оба они есть два состояния одной частицы нуклона. Аналогично, μ-мезон может находиться в трех состояниях, соответствующих трем различным частицам. Такие состояния называются изотопическими, и они характеризуются изотопическим спином, или изоспином. Симметрия, связанная с этими процессами, и получила название изотопической симметрии.
С теорией элементарных частиц, типами взаимодействия полей и попыткой введения единого поля связаны еще два вида симметрии: кварк-лептонной и калибровочной. Кварк-лептонная симметрия проявляется в единой теории поля. Считается, что по существу кварки и лептоны не различимы в области очень больших энергий. Но, в случае спонтанного нарушения симметрии и в области низких энергий, они приобретают совершенно различные свойства. Тем самым установлено, что между кварками и лептонами возможны переходы. Этот факт может служить еще одним убедительным доказательством единства природы. Калибровочная симметрия связана с масштабными преобразованиями, представляющими сдвиги нулевых уровней скалярного и векторного потенциалов полей. Сам термин «калибровочное поле» (преобразование, инвариантность) выдвинул немецкий математик Г. Вейль. Смысл идеи состоит в том, что физические законы не должны зависеть от масштаба длины, выбранного в пространстве, и не должны изменять свой вид при замене этого масштаба на любой другой. С обычной логикой это вроде бы самоочевидно: почему действительно законы Ньютона будут другими, если мы будем измерять путь в метрах, сантиметрах или в мегапарсеках. Однако значение изменения масштаба состоит в том, что оно имеет принципиально нефизический характер, так как вызвано не какими-либо физическими воздействиями, а геометрическими, в частности, изменение длины обусловлено лишь особенностями структуры пространства-времени. Тем самым пространство-время перестает быть лишь пассивным резервуаром вещества и поля, где происходят физические процессы, оно само начинает активно влиять на эти процессы. Геометрия приобретает динамический характер. Можно добавить, что она влияет и на энергетику физического и биологического объекта. Это ярко проявляется при делении овоидов Кассини. Об этом интересном явлении будет подробно рассказано в следующей главе.
Особое значение приобретает принцип калибровочной инвариантности, если преобразования приходят локально в каждой точке пространства-времени и неоднородно, то есть с изменяющимся соотношением от точки к точке. Вот это преобразование Г. Вейль и назвал масштабным, или калибровочным. Его формулировка звучит так: все физические законы инвариантны относительно произвольных (однородных и неоднородных) локальных калибровочных преобразований. В таком виде принцип Вейля является по существу развитием общего принципа относительности Эйнштейна, что все физические законы в любой системе отсчета (инерциальной и неинерциальной) должны иметь одинаковый вид. Уместно в связи с этим заметить, что теория Эйнштейна была первой теорией, в которой геометрический фактор (искривление пространства-времени) напрямую связывался с физической характеристикой (гравитационной массой), что послужило в настоящее время дальнейшему развитию идей геометродинамики. Эти преобразования масштаба оставляют силовые характеристики поля (например Е и В для электромагнитного поля) неизменными. На основе калибровочной симметрии построены теории электрослабого и электросильного взаимодействий. Из этой симметрии следует, что частицы, обладающие определенными свойствами, которые объединяются понятиями «заряда» (электрический, барионный, лептонный), «цвета» кварков, являются источниками полей, если хотите, материальными носителями этих полей. Теория сильных взаимодействий, опирающаяся на представление о цветовых зарядах, получила название квантовой хромодинамики. Эта теория практически завершена для малых расстояний между кварками, но для больших расстояний еще имеются трудности. Тем не менее, применение принципов глобальной и локальной унитарной симметрии способствовало существенному продвижению в области классификации адронов и описания сильных взаимодействий. Вместе с тем на этом пути имеется еще ряд проблем.
Для классификации и описания взаимодействий, наиболее тяжелых и короткоживущих адронов (так называемых резонансов) потребовалось ввести еще три кварка, получивших названия c,b,t. Вместе с лептонами кварки образуют три поколения элементарных частиц, аналогично следует разбить и античастицы. Имеется теоретическое обоснование того, что число поколений должно исчерпываться тремя. Эти повторения поколений представляют собой главную загадку физики элементарных частиц. Возможно, они вновь указывают на составной характер этих частиц и на новую, более глубокую симметрию, уходящую корнями в динамическую симметрию вакуума.