Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин
Шрифт:
Интервал:
Закладка:
Предложение Альберта начинает постепенно до вас доходить. «Иными словами — говорите вы, — ускорение может быть заменой тяготения. Мы можем имитировать действие силы тяжести правильно подобранным ускоренным движением».
«Совершенно верно», — подтверждает Альберт.
«Итак, — продолжаете вы, — мы можем запустить бомбу в космос и, соответствующим образом регулируя ускорение ракеты, гарантировать, что показания весов не изменятся и бомба не взорвётся до тех пор, пока не удалится на безопасное расстояние от Земли». Таким образом, если вы заставите гравитацию и ускорение играть друг против друга, используя для этого возможности ракетной техники XXI в., то сможете избежать катастрофы.
Осознание глубокой связи между гравитацией и ускоренным движением представляет собой главное озарение, снизошедшее на Эйнштейна в один счастливый день в патентном бюро Берна. Хотя эксперимент с бомбой уже высветил суть этой идеи, она заслуживает того, чтобы перефразировать её в терминах, использованных в главе 2. Для этого вспомним, что если мы находимся в закрытом вагоне, не имеющем окон и не испытывающем ускорения, то не существует способа, с помощью которого мы могли бы определить скорость своего движения. Купе внутри будет продолжать выглядеть совершенно одинаково, и любые эксперименты дадут вам тождественные результаты независимо от скорости движения. Более того, не имея внешних ориентиров для сравнения, вы даже не сможете определить, движетесь ли вы вообще. С другой стороны, если вы ускоряетесь, то даже если доступная вам область ограничена внутренностью купе, вы почувствуете силу, действующую на ваше тело. Например, если кресло, в котором вы сидите, обращено вперёд по ходу движения и прикручено к полу вагона, вы почувствуете силу, с которой спинка кресла будет давить на вас, совсем как в примере, приведённом Альбертом. Аналогично, если купе испытывает ускорение, направленное вверх, вы почувствуете силу, действующую на ваши ноги со стороны пола. Идея Эйнштейна состояла в том, что, оставаясь в закрытом купе, вы не сможете определить, когда на вас действует ускорение, а когда сила тяготения: если их величины совпадают, сила, создаваемая ускоренным движением, и сила, возникающая под действием гравитационного поля, неразличимы. Если ваше купе неподвижно стоит на поверхности Земли, вы чувствуете привычную силу, действующую на ваши ноги со стороны пола; точно такими же будут ощущения, если вы ускоренно движетесь вверх. Это та самая эквивалентность, которую Альберт использовал для решения проблемы с запуском в космос оставленной террористами бомбы. Если вагон опрокинется, вы почувствуете со стороны спинки кресла силу (не дающую вам упасть), которая будет такой, как если бы вагон ускорялся в горизонтальном направлении. Эйнштейн назвал неразличимость ускоренного движения и гравитации принципом эквивалентности. Этот принцип составляет основу общей теории относительности.[8]
Описание, приведённое выше, показывает, что общая теория относительности завершает работу, начатую специальной теорией относительности. Используя принцип относительности, специальная теория относительности провозглашает равноправие точек зрения наблюдателей: законы физики проявляются одинаковым образом для всех наблюдателей, находящихся в состоянии равномерного движения. Но это равноправие на самом деле является ограниченным, поскольку из него исключается огромное число точек зрения других наблюдателей, находящихся в состоянии ускоренного движения. Прозрение, пришедшее к Эйнштейну в 1907 г., показывает, как охватить все точки зрения — и тех, кто движется с постоянной скоростью, и тех, кто ускоряется, — в рамках одной изящной концепции. Поскольку нет различия между ускоренным пунктом наблюдения в отсутствии гравитационного поля и неускоренным пунктом наблюдения в присутствии гравитационного поля, можно выбрать это последнее описание и провозгласить, что все наблюдатели, независимо от состояния движения, могут утверждать, что они неподвижны, а «остальная часть мира движется рядом с ними», если они подходящим образом введут гравитационное поле в описание своего окружения. В этом смысле, благодаря включению гравитации, общая теория относительности гарантирует нам, что все возможные точки зрения являются равноправными. (Как мы увидим ниже, это означает, что различия между наблюдателями в главе 2, которые были основаны на ускоренном движении — как в случае с Джорджем, устремившимся за Грейс, включив свой ранцевый двигатель, и постаревшим меньше, чем она — допускают эквивалентное описание без ускорения, но с гравитацией.)
Эта глубокая связь между гравитацией и ускоренным движением, несомненно, представляет собой блестящую догадку, но почему она сделала Эйнштейна столь счастливым? Причина, попросту говоря, состоит в том, что гравитация — загадочное явление. Это грандиозная сила, пронизывающая жизнь космоса, но она ускользающе непонятна. С другой стороны, ускоренное движение, хотя и является несколько более сложным, чем равномерное, является конкретным и вполне материальным. Эйнштейн понял, что, благодаря взаимосвязи между этими явлениями, он может использовать понимание ускоренного движения в качестве могучего инструмента для достижения такого же понимания гравитации. Претворить эту стратегию в жизнь было нелегко даже для такого гения, как Эйнштейн, но, в конечном счёте, этот подход принёс свои плоды в виде общей теории относительности. Чтобы достичь этого, Эйнштейну пришлось выковать второе звено цепи, объединяющей гравитацию и ускоренное движение, — кривизну пространства и времени, — к обсуждению которой мы сейчас перейдём.
Ускорение и искривление пространства и времени
Эйнштейн работал над проблемой гравитации с предельной, часто чрезмерной интенсивностью. Примерно через пять лет после счастливого озарения в бернском патентном бюро, он писал физику Арнольду Зоммерфельду: «Сейчас я работаю исключительно над проблемой гравитации… одно могу сказать определённо — никогда в моей жизни я не изнурял себя так, как сейчас… по сравнению с этой проблемой первоначальная (т. е. специальная) теория относительности кажется детской забавой».{9}
Следующий ключевой прорыв, касающийся простого, но неочевидного следствия применения специальной теории относительности для установления связи между гравитацией и ускоренным движением, был сделан, по-видимому, в 1912 г. Чтобы понять этот шаг в исследованиях Эйнштейна, проще всего обратиться (так, вероятно, поступил и Эйнштейн) к конкретному примеру ускоренного движения.{10} Вспомним, что объект считается ускоренно движущимся, если он изменяет скорость или направление своего движения. Для простоты ограничимся ускоренным движением, в котором скорость остаётся постоянной, а изменяется только направление движения тела. Конкретно рассмотрим движение по кругу, которое можно увидеть на аттракционе «Верхом на торнадо». В этом аттракционе вы становитесь внутрь большого круга, по краю которого расположена стенка, изготовленная из плексигласа, прижимаетесь спиной к этой стенке, и круг начинает вращаться с большой скоростью. Как при всяком ускоренном движении (вы можете ощутить его), вы почувствуете, что ваше тело отбрасывается по радиусу от центра вращения, а круговая плексигласовая стенка вдавливается в вашу спину, не давая вам вылететь с круга. (На самом деле, хотя это не относится к нашему разговору, вращательное движение «прилепляет» ваше тело к плексигласу с такой силой, что когда планка, на которой вы стоите, уходит из-под ног, вы не падаете, а остаётесь прижатым к стенке.) Если движение плавное, и вы закроете глаза, давление, которое будет действовать на вашу спину в результате вращения, — совсем как давление со стороны матраса в постели — почти способно создать иллюзию, что вы лежите. Слово «почти» связано с тем фактом, что вы продолжаете испытывать действие обычной, «вертикальной» гравитации, которая не даёт вашему мозгу одурачить себя. Но если бы вам довелось кататься на этом аттракционе в открытом космосе, и если бы скорость вращения была соответствующей, вы бы почувствовали себя лежащим в обычной постели на Земле. Более того, если бы вы «встали» и попробовали бы прогуляться по внутренней поверхности вращающейся плексигласовой стенки, ваши ноги ощутили бы точно такое же давление, какое они испытывают на обычном полу. На самом деле, проекты космических станций предусматривают подобное вращение для создания искусственной силы тяжести в космическом пространстве.
Теперь, используя ускоренное движение во вращающемся аттракционе для имитации действия силы тяжести, можно, следуя Эйнштейну, посмотреть, как выглядят пространство и время для тех, кто находится на круге. Его рассуждения в приложении к нашей ситуации были бы такими. Мы, неподвижные наблюдатели, легко можем измерить длину окружности и радиус вращающегося круга. Например, чтобы измерить длину окружности, мы будем аккуратно прикладывать рулетку к ободу вращающегося круга; для измерения радиуса мы будем также аккуратно перемещать рулетку от оси вращения к внешнему краю круга. Как можно предположить, основываясь на школьном курсе геометрии, отношение эти двух величин будет равно 2π (около 6,28), в точности таким же, как для окружности, нарисованной на плоском листе бумаги. А как это будет выглядеть с точки зрения того, кто катается на этом аттракционе?