- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Создано человеком - Николай Жаворонков
Шрифт:
Интервал:
Закладка:
Достаточно сопоставить эти числа, чтобы выявить нечто парадоксальное: показатель по модулю упругости и для стали, и для алюминиевых сплавов один и тот же.
Практически так на самом деле и есть. Удельный модуль упругости всех металлических сплавов (кроме сплавов бериллия) не превышает 2500-2600 километров.
Дело в том, что модуль упругости - "орешек" крепкий. Его не одолеть ни термической обработкой, ни деформационными изменениями. Другими словами, все технологические приемы, перед которыми "пасует" удельная прочность, применительно к модулю упругости оказываются бессильными. Но почему же в таком случае возник широко известный парадокс: даже самые высокие прочностные достоинства материалов не гарантируют столь же высокой надежности конструкций? Более того, у них появляются новые пороки, не проявлявшиеся ранее, когда использовались менее прочные конструкционные материалы? Увеличивается, например, чувствительность к концентрации напряжения, когда какая-то часть изделия испытывает большие нагрузки?
Но какая же конструкция обходится без таких концентраций? Просверлили отверстие - сконцентрировали напряжение. Изменили сечение конструкции опять же рискуете вызвать "бунт" напряжения. А под его воздействием быстрее возникает коррозия, проявляется опасность трещин.
Тем, кто помнит довоенное время, хорошо знакомо, например, слово "дюралюминий". Для большинства именно с названием этого сплава ассоциируется появление в магазинах страны посуды, хозяйственного инвентаря, сделанного из легкого практичного материала.
Для ученых с дюралюминием связаны несколько иные воспоминания. Он первая удачная попытка упрочения алюминия. Легированный медью и магнием металл и давал сплав, поражающий всех своей прочностью - 40 кг/мм2. Казалось бы, чего же желать лучше? Используй по своему назначению дюралюминий хоть в технике, хоть в народном хозяйстве! Но такова уж жизнь, что остановок в ней не бывает. Если прочность дюралюминия уже 40 кг/мм2, то почему не получить и еще более прочный сплав?
Вероятно, примерно так рассуждали химики и металлурги того времени. Тем более что развивающаяся техника и промышленность остро нуждались в сверхпрочных сплавах. А к повышению прочностных характеристик, казалось бы, нет препятствий. Стоит в алюминиевые сплавы, легированные медью и магнием, ввести дополнительно цинк (при этом, конечно, изменить процентное содержание меди и магния), как прочность их удвоится. Но то - теория. Что же получилось на практике?
Изготовленные в те годы по новому способу сплавы растрескались еще в складских помещениях металлургических заводов, так и не попав к потребителю. Почему?
Все по той же причине: сплавы погибли от коррозии под напряжением. А ее спровоцировала обычная влажность.
Но сколь ни печальна оказалась попытка упрочения алюминиевого сплава, именно она привела исследователей к выводу о том, что необходимо искать так называемые добавки - стабилизаторы. Ну и, разумеется, совершенствовать режимы термической обработки сплавов.
Итогом всех этих поисков явилось понижение склонности алюминиевых сплавов к коррозии под напряжением.
Конечно, исследования в данном направлении велись не год и не два. Причем в разных странах они нмели своп особенности, С историей одного из них и связана трагедия американских самолетов "Мартин-202".
Машины данной конструкции преследовали поистине роковые "случайности": в полете на большой высоте у них обрывались крылья. Однако самые тщательные анализы компетентнейших комиссий, проверявших конструкцию самолета, так и не нашли в ней изъянов. Очень скоро, однако, о себе заявили во всеуслышанье непредвиденные, необъяснимые происшествия и с истребителями "Скорпион". И опять ученым и экспертам пришлось взяться за кропотливую работу. Что же выяснилось?
В тех и других случаях причина бедствий не в конструкторском решении машины, а в использовании при их реализации алюминиевых сплавов, в которых обычные для алюминия примеси, такие, как железо и кремний, при повышении прочности "срабатывают" в прямо противоположном направлении: в металле развивались усталостные трещины, и кованые стыковые узлы "Скорпиона" разрушались. А поскольку губительный процесс развивался не сразу, а под воздействием повторных нагрузок, то в качестве виновника аварии в первую очередь было заподозрено конструкторское решение этой модели самолета. Когда же истинную причину бедствия установили, содержание железа и кремния в сплаве пришлось снизить до непривычного уровня - порядка одной десятой или даже сотых долен процента.
Так появились сплавы повышенной чистоты, так называемые "пч", и "оч" очень чистые. Дополнительно был уточнен и процесс термической обработки. Были разработаны и нашли широкое применение методы, смягчающие режим старения, обеспечивающие хорошую коррозионную стойкость и повышенную вязкость сплавов при некотором снижении статической прочности. В результате сплавы, отличавшиеся на заре своего появления исключительной чувствительностью к коррозии и повторным нагрузкам, ныне обладают высокой коррозионной стойкостью и вполне удовлетворительной сопротивляемостью к повторным нагрузкам. Такова уж диалектика развития научного поиска.
Правда, не обошлось и без усовершенствования конструкций. Пришлось увеличить радиусы переходов, устранить резкие перепады сечений - всякого рода риски и другие концентраторы напряжений. Чуть позже именно из высокопрочных сплавов были построены и успешно эксплуатировались крылья первого в мире реактивного пассажирского самолета.
И опять возникла иллюзия, что алюминиевые сплавы незаменимы при создании конструкционных материалов, и вновь очень скоро на смену ей пришло разочарование - алюминиевые сплавы с цинком при низких температурах "не работали", становились хрупкими. Вот почему американские специалисты отказались от их применения при создании системы "Спейс-Шаттл". И для изготовления баков под горючее ("Шаттл" использует жидкий водород, температура которого - 253° С, а в качестве окислителя - жидкий кислород 196° С) пришлось взять алюминиевый сплав средней прочности (порядка тех же довоенных 40 кг/мм2).
Правда, при средней прочности этот сплав, легированный медью и марганцем, отличается той прекрасной особенностью, что с понижением температуры практически вплоть до температуры жидкого гелия у него параллельно растут и прочность, и пластичность.
Вот сколько времени и усилий потребовала разгадка тайны прочности алюминиевых сплавов, а доведение ее до уровня 60 кг/мм2 с одновременным улучшением характеристик новых сплавов до нужной кондиции заняло более 30 лет. В настоящее время работы по дальнейшему повышению прочности сплавов ведутся сразу в нескольких индустриально развитых странах. Теперь берется еще более высокий рубеж - 75 кг/мм2.
Задача эта крайне сложная. И совершенно очевидно, что сплавы с такой невиданной прочностью будут иметь узко ограниченное применение. К тому же не ясны возможности дальнейшего существенного повышения прочности конструкционных алюминиевых сплавов. И не ждет ли исследователей за едва приоткрывшимся горизонтом еще одна загадка - сказать трудно.
Аналогично положение и с другими сплавами. Правда, в последние годы во всем мире наблюдается истинный бум по поводу разработки алюминиево-литиевых сплавов.
Такую заинтересованность в этом материале нетрудно объяснить. Как известно, литий - элемент легкий. Введение его в алюминиевые сплавы позволяет снизить их плотность на 8-12 процентов при сохранении удовлетворительной прочности и даже некотором повышении модуля упругости. Применение данных сплавов уменьшает вес всей конструкции. А это уже новый этап в создании конструкционных материалов, тогда как вся предшествующая история знала лишь повышение удельной прочности за счет роста ее абсолютных значений.
Другими словами, сейчас в действие вступил знаменатель той дроби, где он - удельный вес материала, а числитель - прочность. Обобщая же современный этап развития конструкционных материалов, неизменно приходишь к единственному выводу: высокие удельные и абсолютные прочностные характеристики сталей, алюминиевых, магниевых и титановых сплавов уже достигнуты и возможности их дальнейшего существенного прироста невелики.
Вместе с тем хорошо известно, что самые высокие прочностные характеристики лучших современных сплавов еще далеки от теоретической прочности кристаллических тел. А она, как показал член-корр. Я. И. Френкель, может достигать колоссальной величины - 1000 кг/мм2 N и выше. Чем же объяснить столь гигантское расхождение между теоретической и практической прочностями?
Прежде всего дефектами структуры материала, главным образом линейными дефектами, именуемыми в науке и технике линейпыми дислокациями.
Сегодня не только специалистам-материаловедам хорошо известны опыты академика А. Ф. Иоффе, объяснившего в свое время упрочнение каменной соли, погруженной в воду (с 0,5 до 160 кг/мм2), растворением поверхностного слоя кристаллов, вследствие чего ликвидировались и его дефекты. Причем роль дефектов структуры особенно отчетливо выступает при рассмотрении масштабного фактора, то есть зависимости прочности образцов от их размеров.

