- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Знаете ли вы физику? - Яков Перельман
Шрифт:
Интервал:
Закладка:
45. На краю стола
Если плоскость стола перпендикулярна к отвесной линии, проходящей через ее середину, то края стола расположены, очевидно, дальше от центра Земли, т. е. выше, чем середина (практически на весьма незначительную величину). При полном отсутствии трения и при идеально плоской поверхности шар должен поэтому скатиться с края стола к его середине. Здесь, однако, он не может остановиться С накопленная кинетическая энергия увлечет его далее до точки, находящейся на одном уровне с начальной, т. е. до противоположного края.
Рис. 76. При взгляде на этот рисунок, не у всех явится мысль, что шар должен скатиться к середине стола
77. Но из этого чертежа ясно, что шар не может оставаться в покое (при отсутствии трения)
Оттуда шар снова откатится в первоначальное положение и т. д. Короче говоря, при отсутствии трения о плоскость стола и сопротивления воздуха, шар, положенный на край идеально плоского стола, пришел бы в нескончаемое движение.
Один американец предлагал устроить на этом принципе вечное движение. Проект его, изображенный на рис. 78, по идее совершенно правилен и осуществил бы вечное движение, если бы возможно было избавиться от трения. Впрочем, то же самое можно осуществить и проще С с помощью груза, качающегося на нити: при отсутствии трения в точке привеса (и сопротивления воздуха) такой груз должен качаться вечно[11]. Производить работу подобные приспособления, однако, не способны.
В заключение поучительно остановиться на возражении, сделанном одним из читателей, который утверждает, что в приведенном рассуждении смешиваются две точки зрения – геометрическая и физическая. Геометрически, – поясняет читатель, – мы считаем лучи Солнца сходящимися на его поверхности, физически же признаем их параллельными. Подобно этому, в нашей задаче две отвесные линии, проведенные на Земле в расстоянии 1 м, геометрически пересекаются в центре земного шара, но физически должны считаться параллельными. А потому сила, увлекающая шар с края стола к середине, физически равна нулю; никакого скатывания наблюдаться не может.
Рис. 78. Один из проектов «вечного движения»
Возражение ошибочно. Нетрудно убедиться расчетом, что отвесные линии, проведенные на Земле в расстоянии 1 м одна от другой, составляют между собою угол, который в 23 000 раз больше, чем угол между лучами Солнца, направленными к тем же точкам. Что касается величины силы, побуждающей шар скатываться с края стола, длиною в 1 м, то она составляет примерно одну 10–миллионную долю веса шара. В условиях нашей задачи, т. е. при полном отсутствии сопротивлений, всякая сколь угодно малая сила должна привести тело в движение, как бы велика ни была его масса. В данном случае, впрочем, сила не так уж мала: она одного порядка величины с тою силою, которая порождает океанские приливы; последняя сила даже и в реальных условиях (т. е. при наличии сопротивлений) ощутительно проявляет свое действие.
46. На наклонной плоскости
Не следует думать, что в положении А брусок, оказывая на опорную плоскость большее удельное давление, испытывает и большее трение. Величина трения не зависит от размеров трущихся поверхностей. Поэтому если брусок скользил, преодолевая трение, в положении В, то он будет скользить и в положении А.
47. Два шара
1. При решении этой задачи нередко делают существенную ошибку: не принимают во внимание, что отвесно падающий шар движется только поступательно, между тем как шар, скатывающийся по плоскости, совершает, кроме поступательного движения, также и вращательное. Не свободны от этого недосмотра даже некоторые школьные учебники.
Какое влияние оказывает отмеченное обстоятельство на скорость скатывающегося тела, видно из следующего вычисления.
Потенциальная энергия шара, обусловленная его положением вверху наклонной плоскости, превращается при отвесном падении целиком в энергию поступательного движения, и из уравнения
или (после замены веса р шара произведением его массы m на ускорение g тяжести) из равенства
легко получается скорость v такого шара в конце пути
где h – высота наклонной плоскости.
Иначе обстоит дело с шаром, скатывающимся по наклонной плоскости. В этом случае та же потенциальная энергия ph преобразуется в сумму двух кинетических энергий – в энергию поступательного движения со скоростью v1 и вращательного – с угловою скоростью ω. Величина первой энергии равна
Вторая равна полупроизведению момента инерции K шара на квадрат его угловой скорости ω:
Имеем, следовательно, уравнение:
Из курса механики известно, что момент инерции K однородного шара массы т и радиуса r относительно оси, проходящей через центр, равен 2/5 тr2. Далее, легко сообразить, что угловая скорость ω этого шара, катящегося с поступательною скоростью v1, равна . Поэтому энергия вращательного движения
Заменив в нашем уравнении, кроме того, вес р шара равным ему выражением mg, получаем:
или, после упрощения,
gh = 0,7v12.
Отсюда поступательная скорость
Сопоставляя эту скорость со скоростью в конце отвесного падения (), видим, что они заметно различаются: скатившийся шар (любого радиуса и любой массы) в конце пути, да и в каждой его точке, движется вперед со скоростью на 16 % меньшею, чем шар, свободно упавший с той же высоты.
Сравнивая шар, скатывающийся по наклонной плоскости, с телом, скользящим по той же плоскости с равной высоты, легко установить, что скорость первого в каждой точке пути на 16 % меньше скорости второго.
Скользящий шар при отсутствии трения достигает конца наклонного пути раньше (на 16 %), нежели катящийся. То же верно и для тела, падающего отвесно: оно должно опередить скатывающийся шар на 16 %.
Кто знаком с историей физики, тому известно, что Галилей установил законы падения тел, производя опыты с шарами, которые он пускал по наклонному желобу (длина – 12 локтей, возвышение одного конца 1–2 локтя). После сказанного выше может возникнуть сомнение в правильности пути, избранного Галилеем. Сомнение, однако, отпадает, если вспомним, что скатывающийся шар в своем поступательном перемещении движется равноускоренно, так как в каждой точке наклонного желоба скорость его составляет одну и ту же долю (0,84) скорости отвесно падающего шара на том же уровне. Форма зависимости между пройденным путем и временем остается та же, что и для тела, свободно падающего. Поэтому Галилей и мог правильно установить законы падения тел в результате своих опытов с наклонным желобом.
Конец ознакомительного фрагмента.
Примечания
1
За два года до смерти американский изобретатель пожелал поощрить стипендией наиболее сметливого юношу Соединенных Штатов. С разных концов республики направлены были к нему одареннейшие школьники, по одному из каждого штата, и Эдисон, во главе особой, учрежденной им комиссии, подверг молодых людей испытанию, предложив ответить письменно на 57 вопросов из физики, химии, математики и общего характера. Победителем в состязании оказался 16-летний Вильбер Хастон из Детройта. Правда, выдающимся изобретателем этот юноша так и не стал.
2
Сиракузский правитель, по преданию С родственник Архимеда. (Не смешивать с ученым-механиком древности Героном.)
3
Ныне – «Чистые пруды»
4
Микрон становится уже довольно крупной единицей длины и для современной техники: массовое производство сложных машин, возможное лишь при полной взаимозаменяемости частей, ввело в производственную практику употребление измерительных приборов, улавливающих десятые доли микрона (см. ответ на вопрос 218).
5
Строго говоря, о диаметре электрона можно говорить лишь условно. «Если сделать предположение, – пишет проф. Дж. П. Томсон, – что электрон подчиняется тем же самым законам, каким следует в лаборатории заряженный металлический шар, то можно подсчитать и «диаметр» электрона; для него получится значение 3,7·10–13 см. Но этот результат не удалось еще проверить никаким опытом».
![Хочу всё знать [1970] - Анатолий Томилин Библиотека книг бесплатно – читать онлайн! | BibliotekaOnline.com](https://cdn.bibliotekaonline.com/s20/2/2/8/5/7/7/228577.jpg)
