Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Химия » Общая химия - Николай Глинка

Общая химия - Николай Глинка

Читать онлайн Общая химия - Николай Глинка

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 129 130 131 132 133 134 135 136 137 ... 180
Перейти на страницу:

Для солей свинца(II), в отличие от солей олова (II), восстановительные свойства не характерны; перевести соединения свинца (II) в соединения свинца (IV) можно лишь с помощью очень сильных окислителей.

Соединения свинца(IV).

Диоксид (или двуокись) свинца PbO2 — темно-бурый порошок, образующийся при действии сильных окислителей на оксид или соли свинца (II). Диоксид свинца, подобно диоксиду олова, представляет собой амфотерный оксид с преобладанием кислотных свойств. Соли, отвечающие несуществующей в свободном состоянии свинцовой кислоте H2PbO3, называются плюмбатами. Например, при сплавлении диоксида свинца с оксидом кальция образуется плюмбат кальция CaPbO3:

Большинство плюмбатов нерастворимо в воде. Растворимы плюмбаты натрия и калия; в растворе они сильно гидролизованы.

Основные свойства диоксида свинца проявляются в образовании очень нестойких солей свинца (IV). Так, при действии на диоксид свинца соляной кислоты в первый момент образуется хлорид свинца(IV) PbCl4, который, однако, легко отщепляет хлор, переходя в хлорид свинца (II) PbCl2:

Все соединения свинца (IV) — очень сильные окислители. Практическое применение в качестве окислителя в химической промышленности имеет PbO2.

- 512 -

Известны два смешанных оксида свинца: Pb3O4 и Pb2O3. Их можно рассматривать как соединения оксидов свинца(II) и (IV): 2PbO·PbO2(Pb3O4) и 2PbO·PbO2(Pb2O3). Сурик Pb3O4 — вещество ярко-красного цвета. На его основе изготовляют краску, применяемую для защиты металлов от коррозии,

189. Свинцовый аккумулятор.

Готовый к употреблению свинцовый аккумулятор состоит из решетчатых свинцовых пластин, одни из которых заполнены диоксидом свинца, а другие — металлическим губчатым свинцом. Пластины погружены в 35-40% раствор H2SO4 при этой концентрации удельная электрическая проводимость раствора серной кислоты максимальна.

При работе аккумулятора — при его разряде — в нем протекает окислительно-восстановительная реакция, в ходе которой металлический свинец окисляется

а диоксид свинца восстанавливается:

Электроны, отдаваемые атомами металлического свинца при окислении, принимаются атомами свинца PbO2 при восстановлении; электроны передаются от одного электрода к другому по внешней цепи.

Таким образом, металлический свинец служит в свинцовом аккумуляторе анодом и заряжен отрицательно, а PbO2 служит катодом и заряжен положительно.

Во внутренней цепи (в растворе H2SO4) при работе аккумулятора происходит перенос ионов. Ионы SO42- движутся к аноду, а ионы H+— к катоду. Направление этого движения обусловлено электрическим полем, возникающим в результате протекания электродных процессов: у анода расходуются анионы, а у катода — катионы. В итоге раствор остается электронейтральным.

Если сложить уравнения, отвечающие окислению свинца и восстановлению PbO2, то получится суммарное уравнение реакции, протекающей в свинцовом аккумуляторе при его работе (разряде):

Э. д. с. заряженного свинцового аккумулятора равна приблизительно 2 В. По мере заряда аккумулятора материалы его катода (PbO2) и анода (Рb) расходуются. Расходуется и серная кислота. При этом напряжение на зажимах аккумулятора падает. Когда оно становится меньше значения, допускаемого условиями эксплуатации, аккумулятор вновь заряжают.

Для зарядки (или заряда) аккумулятор подключают к внешнему источнику тока (плюсом к плюсу и минусом к минусу). При этом ток протекает через аккумулятор в направлении, обратном тому, в котором он проходил при разряде аккумулятора, В результате этого электрохимические процессы на электродах «обращаются».

- 513 -

На свинцовом электроде теперь происходит процесс восстановления

т. е. этот электрод становится катодом.

Электролит свинцового аккумулятора представляет собой раствор серной кислоты, содержащий сравнительно малое количество ионов Pb2+. Концентрация ионов водорода в этом растворе намного больше, чем концентрация ионов свинца. Кроме того, свинец в ряду напряжений стоит до водорода. Тем не менее при зарядке аккумулятора на катоде восстанавливается именно свинец, а не водород. Это происходит потому, что перенапряжение выделения водорода на свинце особенно велико (см. табл. 20 на стр. 295).

На электроде из PbO2 при зарядке идет процесс окисления

следовательно, этот электрод является теперь анодом. Ионы в растворе движутся в направлениях, обратных тем, в которых они перемещались при работе аккумулятора.

Складывая два последние уравнения, получим уравнение реакции, протекающей при зарядке аккумулятора:

Нетрудно заметить, что этот процесс противоположен тому, который протекает при работе аккумулятора: при зарядке аккумулятора в нем вновь получаются вещества, необходимые для его работы.

Глава XVI. ОБЩИЕ СВОЙСТВА МЕТАЛЛОВ. СПЛАВЫ

В предыдущих главах мы рассмотрели свойства неметаллов и лишь нескольких элементов, относящихся к металлам. Прежде чем рассматривать остальные металлы по группам периодической системы, остановимся на их общих свойствах и методах получения из природных соединений.

190. Физические и химические свойства металлов. Электронное строение металлов, изоляторов и полупроводников.

Металлы обладают рядом общих свойств. К общим физическим свойствам металлов относятся их высокая электрическая проводимость и теплопроводность, пластичность, т. е. способность подвергаться деформации при обычных и при повышенных температурах, не разрушаясь. Пластичность металлов имеет очень большое практическое значение. Благодаря этому свойству металлы поддаются ковке, прокатке, вытягиванию в проволоку (волочению), штамповке.

- 514 -

Металлам присущи также металлический блеск, обусловленный их способностью хорошо отражать свет, и непрозрачность*. В табл. 29 приведены значения удельного электрического сопротивления и теплопроводности некоторых металлов. Для сравнения в ней даны сведения для двух неметаллов.

Таблица 29. Удельное электрическое сопротивление ρ и коэффициент теплопроводности λ некоторых простых веществ при 20°C.

В химическом отношении все металлы характеризуются сравнительной легкостью отдачи валентных электронов и, как следствие этого, способностью образовывать положительно заряженные ионы и проявлять в своих соединениях только положительную окисленность. Многие металлы, например железо, хром, марганец, имеют в различных соединениях разную степень окисленности, но она всегда положительна. В связи с этим металлы в свободном состоянии являются восстановителями. Восстановительная способность разных металлов неодинакова. Для реакций в водных растворах она определяется положением металла в ряду напряжений и концентрацией (активностью) его ионов в растворе.

Причина общности как физических, так и химических свойств металлов лежит в общности строения их атомов и природы кристаллических решеток металлов.

Общей особенностью атомов металлов являются их большие в сравнении с атомами неметаллов размеры (см. § 33). Внешние электроны в атомах металлов находятся на значительном удалении от ядра и связаны с ним сравнительно слабо - атомы металлов характеризуются низкими потенциалами ионизации (см. § 34, табл. 4 и 5) и близким к нулю или отрицательным сродством к электрону. Именно поэтому металлы легко отдают валентные электроны, выступая в качестве восстановителей, и, как правило, не способны присоединять электроны — проявлять окислительные свойства.

Рассмотрим особенности строения металлов в кристаллическом состоянии. Как отмечалось, металлы обладают высокой электрической проводимостью, причем переносчиками тока в металлах служат электроны.

* В высокодисперсном состоянии металлы обычно имеют черный цвет и не блестят.

- 515 -

Это говорит о том, что в металлах имеются «свободные» электроны, способные перемещаться по кристаллу 6 под действием даже слабых электрических полей.

Рис. 135. Схема образования энергетических уровней при увеличении числа взаимодействующих атомов.

В то же время неметаллы в кристаллическом состоянии обычно представляют собою изоляторы и, следовательно, не содержат свободных электронов. Причины этих различий можно объяснить на основе метода молекулярных орбиталей (метод МО).

В § 45 было показано, что при взаимодействии двух одинаковых атомов вместо двух энергетически равноценных исходных атомных орбиталей образуются две молекулярные орбитали, отвечающие различным уровням энергии (рис. 45). Если взаимодействуют три атома, причем их валентные орбитали заметно перекрываются, то возникают не две, а три молекулярные орбитали, в равной степени принадлежащие всем трем атомам (делокализованные орбитали) и характеризующиеся тремя различными значениями энергии. При последовательном увеличении числа взаимодействующих атомов добавление каждого из них приводит к образованию еще одного энергетического уровня и к дальнейшей делокализации молекулярных орбиталей (т. е. к распространению их на большее число атомов); общее число энергетических уровней будет при этом равно числу взаимодействующих атомов. Схема подобного процесса представлена на рис. 135.

1 ... 129 130 131 132 133 134 135 136 137 ... 180
Перейти на страницу:
На этой странице вы можете бесплатно скачать Общая химия - Николай Глинка торрент бесплатно.
Комментарии