- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
100 Великих Книг - Юрий Абрамов
Шрифт:
Интервал:
Закладка:
«Кто же не попадет в ворота [из лука]?», то в этом отношении исследовать истину легко; однако, что, обладая некоторым целым, можно быть не в состоянии владеть частью, — это показывает трудность исследования истины.
Аристотелю же принадлежит и наиболее известное, точное и работоспособное определение истины как знания, соответствующего действительности. Он же — главный провозвестник целой науки, дающей любому человеку мыслительные инструменты для постижения истины и оперирования знанием, а также достоверные приемы аргументации и способы доказательства. Наука эта получила названия логики. Соответствующие трактаты на данную тему составляют отдельный блок в корпусе Аристотелева канона и получили в истории науки звучное название «Органона». Но и «Метафизика» насквозь пронизана той же проблематикой. Это относится и к формулировке логических законов — противоречия и исключенного третьего, и к анализу апорий — логических затруднений, возникающих при попытке решить некоторые теоретические проблемы.
Аристотелю подчас казалось, что он нашел единственно возможное и правильное решение вопросов, стоявших перед человечеством. На самом деле он больше поставил новых вопросов, чем дал однозначных ответов. Но, может быть, в этом и есть смысл и ценность настоящей науки, когда при решении какой-то одной проблемы возникает множество других, требующих все новых и новых усилий в продвижении к истине. И процесс этот не прервется никогда!
14. ЕВКЛИД
«НАЧАЛА»
Евклид, пожалуй, единственный великий ученый, который ни при жизни, ни после смерти не подвергался критике, травле или инсинуациям. Он одинаково чтился представителями любых, даже самых непримиримых между собой направлений — ив математике, и в естествознании, и в философии. Написанная им книга с весьма распространенным в античные времена названием — «Начала» — настолько проста, стройна и убедительна, что с ходу обезоруживает любого противника. Сказанное вовсе не означает, что знакомство с великим творением александрийского математика напоминает чтение апулеевского «Золотого осла». Известен даже анекдот: когда царь Птолемей поинтересовался у своего ученого, нельзя ли ему как царю освоить премудрости математики побыстрее и без лишних усилий, Евклид ответил, что в геометрии «царского пути» не существует.
Общепризнанно, что в истории мирового научного книгопечатания — особенно на первых его порах — «Начала» Евклида занимают первое место. Известно более тысячи изданий знаменитого трактата, переведенного на разные языки, а до изобретения книгопечатания он распространялся в бесчисленных списках и долгое время служил самым распространенным и популярным учебником математики. Современные школьные учебники геометрии почти буквально повторяют первые шесть книг (а всего их — пятнадцать) Евклидовых «Начал». Изложение в них строится по безупречной логической схеме: из минимального набора определений, постулатов и аксиом по строго определенным правилам последовательно выводится ряд теорем. Знаменитые аксиомы Евклида, как они сформулированы в 1-й книге «Начал», даны в такой последовательности:
1. Равные тому же суть и взаимно равны.
2. Если к равным приложены равные, то и остатки равны.
3. Если от равных отнять равные, то и остатки равны.
4. Если к неравным приложены равные, то и целые неравны.
5. Если от неравных отнять равные, то и остатки неравны.
6. Двукратные того же суть взаимно равны.
7. Половины того же суть взаимно равны.
8. Совмещающиеся взаимно суть взаимно равны.
9. Целое больше своей части.
10. Все прямые углы взаимно равны.
11. Если на две прямые падает третья прямая и делает углы внутренние и по ту же сторону меньше двух прямых, то оные две прямые линии, продолженные беспредельно, взаимно встретятся по ту сторону, по которую углы меньше двух прямых.
12. Две прямые не заключают пространства.
(Перевод Ф. Петрушевского)
Большинство исходных дефиниций современной математики также заимствовано из книги Евклида. Так, прямая линия определяется как «та, которая равно расположена по отношению к точкам на ней», а плоская поверхность как «та, которая равно расположена по отношению к прямым на ней». В свою очередь, соответствующее отношение плоскостей (или линий) образует трехмерный евклидовский объем.
В далеком прошлом, на заре математики практические потребности пастушества и земледелия вывели на первое место измерение длин и расстояний (а не, скажем, объемов и емкостей). Развитие строительной и землемерной практики обусловило переход к измерению углов и поверхностей. Абстрактная геометрическая наука, отражая логику развития практики и производства, двигалась от изучения линии через поверхность — к объему. Одно измерение прибавлялось к другому, в результате в классической евклидовой геометрии объем оказался трехмерным (и соответственно плоскость — двухмерной, а линия — одномерной).
Однако в повседневной практике долго еще оставались измерения с помощью реальных объемных тел. Так, у древних индийцев одной из наиболее употребительных мелких единиц измерения (причем одновременно — веса и длины) выступала величина ячменного зерна (привлекались и еще более мелкие, по существу мельчайшие из видимых частицы — например, пылинка в солнечном луче). Длины измерялись в следующих единицах: восемь ячменных зернышек приравнивались к толщина пальца, четыре пальца — к объему кулака, а двадцать четыре составляли «локоть», четыре локтя — величину индийского лука и т. д. — вплоть до мили, содержавшей четыре тысячи локтей. Современные каменщики, как еще строители в Древнем Египте, измеряют толщину кладки в кирпичах (так, толщина стен оценивается в полкирпича, в кирпич, полтора, два и т. д.). И кирпич, и ячменное зерно используются в обоих приведенных случаях как одномерные (т. е. недифференцированные по измерениям) объемы для измерения одномерной же длины, ширины, толщины. Понятно, что в тех же «одномерных единицах» можно измерить площадь или емкость (например, кувшина, мешка — с помощью ячменя, а вагона, кузова — с помощью кирпичей).
Принципиально допустимо, опираясь на понятие одномерного объема, построить сколько угодно-мерную воображаемую геометрию, где площади и длины будут определяться в порядке, обратном логике геометрии Евклида. Фундаментальным, основополагающим понятием геометрической науки могли стать не линии и плоскости, а объем как непосредственное отражение реальной пространственности.
Например, говорят, какая-то комната (зал, дом, резервуар и т. п.) больше, чем другая; или: новый прибор (машина) более компактен и занимает меньше места (меньшее пространство), чем прежняя модель. При всей приблизительности приведенных сравнений реальная пространственная объемность выражена здесь в одном измерении — в отношении «больше — меньше». Разве при измерении линейкой поверхности стола одномерная линия получается не при помощи операций с двумя объемами (поскольку объемны и линейка, и стол, поверхность которого как сторона реальной объемности подвергается измерению)? Полученная линия и измеренная длина, а так же их численные величины и являются результатом определенного сопоставления реальных объемных предметов.
Если бы в результате аналогичных сравнений были выработаны единицы измерений одномерных объемов, а само понятие одномерного объема было положено в основание геометрии, — то в этом случае понятие линии естественно могло бы быть представлено в виде научной абстракции, вытекающей из одномерного объема, а именно: как кубический корень из единицы одномерного объема. Гипотетическая геометрия, построенная на таком основании, была бы отнюдь не менее полной, чем традиционная евклидова, и также бы отражала объективные свойства пространства.
Однако представлять одномерность в этом случае в качестве сущности реальной пространственной объемности было бы так же недопустимо, как и отождествлять с пространственностью трехмерность и четырехмерность.
Пример того, как одни и те же математические понятия выражаются в различном числе измерений, можно найти, сравнивая традиционную геометрию с аналитической. В аналитической геометрии точка описывается в системе координат на плоскости — двумя числами (абсциссой и ординатой), а в пространстве — тремя числами (абсциссой, ординатой и аппликатой), — в результате чего точка может выступать и как двухмерная, и как трехмерная точка. Дополнив три координаты четвертой (временем), Герман Минковский сформулировал понятие Провой точки, выразив ее в четырех измерениях. При этом она не просто стала четырехмерной, но и обрела движение, превратившись в мировую линию. Открытие Минковского, сыгравшее значительную роль в развитии физики, вовсе не явилось открытием четырехмерной сущности материального мира, но выступило одним из возможных опытов построения четырехмерной геометрии и описания в понятиях такой геометрии пространственности реальных вещей.

