- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума - Микель Альберти
Шрифт:
Интервал:
Закладка:
* * *
ТРАНСЦЕНДЕНТНЫЕ ЧИСЛА
Многочлен — это выражение, в котором присутствует переменная, возведенная в различные степени с натуральным показателем. Числа, на которые умножается переменная в этих степенях, называются коэффициентами. Например, следующий многочлен
Р(х) = х5 — 4х3 + 3х2/2 -6
имеет рациональные коэффициенты, а именно 1, -4, 3/2 и -6. Число а называется корнем многочлена, если при этом значении переменной многочлен обращается в ноль: Р(а) = 0. Число а = 2 является корнем вышеприведенного многочлена. Число называется трансцендентным, если не существует многочлена с рациональными коэффициентами, корнем которого оно бы являлось. Иными словами, нельзя записать уравнение со степенями с натуральным показателем, решением которого будет трансцендентное число. Иррациональность числа √2 была доказана еще в Древней Греции. Об иррациональности числа я математики подозревали давно, однако доказательство этому было найдено лишь в 1761 году благодаря усилиям Иоганна Ламберта. В 1882 году Линдеман доказал, что я является трансцендентным числом. Как следствие, была окончательно доказана невозможность решения задачи о квадратуре круга. Число е (е = 2,71828182845904…) названо так по первой букве фамилии одного из величайших математиков всех времен — Леонарда Эйлера (1707–1783). Так же как и π, е является иррациональным и трансцендентным.
* * *
Натуральные числа столь близки нам, что многие считали их божественным творением. Можно сказать, что нечто столь совершенное не имеет изъянов и что любая теорема о натуральных числах в итоге обязательно должна быть либо доказана, либо опровергнута. Любое утверждение в системе натуральных чисел обязательно является либо истинным, либо ложным.
Однако математик Курт Гёдель (1906–1978) доказал, что это не так, что существуют недоказуемые теоремы о натуральных числах, то есть о них нельзя сказать, истинны они или ложны. Согласно так называемой теореме Геделя о неполноте натуральные числа также содержат парадоксы.
* * *
ПАРАДОКСЫ
Парадокс — это рассуждение, приводящее к взаимно исключающим заключениям. Рекурсия в языке порой становится причиной парадоксов, в частности, как в двух первых случаях из числа представленных ниже. Третий случай является удивительным примером математической задачи с тремя разными решениями.
1. Некий брадобрей бреет только тех, кто не бреется сам. Кто должен брить самого брадобрея?
2. Слово «гетерологичный» означает «неприменимый к самому себе». Является ли само слово «гетерологичный» гетерологичным словом?
3. Парадокс Бертрана. В окружности случайным образом проводится хорда. Какова вероятность того, что ее длина будет превышать длину стороны равностороннего треугольника, вписанного в эту же окружность? Эту вероятность можно рассчитать тремя разными способами и получить три разных результата: 1/2, 1/3 и 1/4.
* * *
Как породить и приручить чудовищеНайти смысл и значение основных математических понятий всегда было творческой задачей. Существует множество простых уравнений, о которых говорят, что они не имеют решения, так как число, которое было бы их решением, не имеет смысла в наиболее часто используемой системе чисел.
В поле натуральных чисел, которые используются при счете, не имеет решения следующее уравнение, так как единственно возможное его решение не является натуральным числом:
2х = 1.
Однако это уравнение имеет решение в области дробных, то есть рациональных чисел:
Аналогично, очень простое уравнение
х2 = 2
не имеет решения в поле рациональных чисел. Именно с этой проблемой столкнулись древние греки. Однако им пришлось принять этот «чудовищный» результат, поскольку он являлся решением одной из простейших геометрических задач — задачи о нахождении диагонали квадрата единичной стороны.
Решение этого уравнения и этой задачи расширяет поле чисел так называемыми вещественными числами:
Можно подумать, что некоторые уравнения не имеют решений просто потому, что не существует чисел, которые описывали бы их решения, и, следовательно, решение имеет всякое уравнение. Суть проблемы в том, принадлежит решение этого уравнения к известным на данный момент числам или нет. Приведем еще один пример: мы говорим, что уравнение
х2 = —1
не имеет решения. Однако оно не имеет решения потому, что мы считаем х вещественным числом — конечной или бесконечной дробью, периодической либо нет.
Однако существует значение х, которое является решением этого уравнения, и выглядит оно «чудовищно»:
В середине XVI века Джероламо Кардано нашел формулу решения кубических уравнений, но, применив ее к уравнению х3 — 15х — 4 = 0, он столкнулся с проблемой. Нетрудно показать, что решением этого уравнения является х = 4. Однако решение, найденное по формуле Кардано, выглядело совершенно иначе:
Перед нами — еще одно «чудовище». Какой смысл имеет квадратный корень из отрицательного числа? Как соотносится подобное число с известным нам решением х = 4? Если мы примем квадратные корни из отрицательных чисел как числа, то какое значение они будут иметь?
Лишь в начале XIX века корни из отрицательных чисел получили свое значение: они стали составной частью комплексных чисел и им были поставлены в соответствие точки в декартовых координатах. Множество комплексных чисел, обозначаемое символом С, расширяет поле вещественных чисел. Комплексное число — это число, состоящее из двух частей: вещественной и мнимой. Мнимая часть представляет собой произведение вещественного числа на i — корень из минус единицы, также называемый мнимой единицей. Рассмотрим два комплексных числа, а и Ь:
i = √-1
a = 2 + 3i
b = 1/2 — i√5.
Чтобы представить число а = 2 + 3i в декартовой системе координат, нужно отложить две единицы вдоль оси абсцисс и три единицы — вдоль оси ординат. Полученная точка будет иметь координаты (2, 3). Однако мы изобразили не просто точку на координатной плоскости — в отличие от точек и векторов на плоскости, с комплексными числами можно выполнять все известные алгебраические операции: сложение, вычитание, умножение, возведение в степень и т. д., и эти вычисления аналогичны вычислениям с вещественными числами. Наконец, система комплексных чисел является полной, так как любое уравнение на поле комплексных чисел имеет решение на этом же поле, что не выполняется для других множеств.
После того как было описано представление комплексных чисел на плоскости, они стали играть определяющую роль при решении задач, не имеющих решения в поле вещественных чисел.
Симбиоз алгебры и геометрииИзложенное в предыдущем разделе стало возможным благодаря великому математическому творению — симбиозу алгебры и геометрии, которым стала аналитическая геометрия, разработанная Декартом и Ферма. Некоторые математики античности пытались создать систему геометрического представления формул. Однако лишь усилиями Декарта алгебра и геометрия объединились навсегда.
Предметом алгебры являются формулы и уравнения, предметом геометрии — фигуры и пространство. В аналитической геометрии эти два мира сливаются воедино: для каждой фигуры существует описывающая ее формула, для каждой формулы — множество точек плоскости, удовлетворяющих ей. Так уравнения обретают геометрический смысл, что облегчает их наглядное представление.
Такой подход позволяет нанести решения уравнений на «математическую карту» — систему координат. Но при поиске доказательств аналитическая геометрия не всегда полезна, так как иногда чисто геометрическое доказательство формулируется красивее, короче и четче, чем аналитическое.
Уравнение 3х — у + 1 = 0 — это элемент алгебры, смысл которого состоит в вычислении двух чисел, х и у, удовлетворяющих этому равенству. Этому уравнению удовлетворяют различные пары чисел: х = 0, у = 1; х = 1, у = 4; х = —1; у = —2.
Аналитическая геометрия придает этим числам новый смысл благодаря количественному измерению пространства. Если речь идет о двумерной плоскости, на ней проводятся две прямые, соответствующие двум измерениям на плоскости, на которых откладываются вещественные числа. Из соображений удобства эти линии обычно перпендикулярны друг другу, хотя это необязательно. Далее значениям переменной х сопоставляются числа на одной оси, значениям переменной у — числа на другой оси. Обозначим на плоскости точки А, В и С, соответствующие трем парам вышеуказанных решений уравнения:

