Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин
Шрифт:
Интервал:
Закладка:
72
Название объясняется тем, что «ромбы Ходжа», математические выражения чисел отверстий различных размерностей для пространств Калаби — Яу, являются зеркальными отражениями друг друга для каждой зеркальной пары.
73
Термин зеркальная симметрия используется в физике и в других контекстах, совершенно не связанных с данным, например, в связи с понятием киральности, т. е. в связи с вопросом о том, является ли Вселенная инвариантной относительно замены правого на левое (см. примечание {44}).
74
Для читателя, склонного к математической строгости рассуждений, будет понятно, что вопрос состоит в том, является ли топология пространства динамической, т. е. может ли она меняться во времени. Отметим, что хотя представление о динамических изменениях топологии часто используется в этой книге, на практике обычно рассматривается однопараметрическое семейство пространственно-временных многообразий, чья топология меняется при изменении параметра семейства. Формально этот параметр не является временем, но в определённом контексте может с ним отождествляться.
75
Для математически подкованного читателя отметим, что процедура включает сдутие рациональных кривых на многообразии Калаби — Яу. Далее используется тот факт, что при определённых условиях образовавшаяся сингулярность может быть устранена серией последовательных раздутий.
76
K. C. Cole, «New York Times Magazine», October 18, 1987, p. 20.
77
Цитируется по книге: John D. Barrow, «Theories of Everything». New York: Fawcett-Columbine, 1992, p. 13. (В рус. пер. цитата есть в книге: Кузнецов Б. Г. «Эйнштейн: Жизнь. Смерть. Бессмертие». М.: Наука, 1980, с. 363.)
78
Кратко поясним различия между пятью теориями струн. Для этого отметим, что колебательные возбуждения вдоль струнной петли могут распространяться по часовой стрелке и против неё. Теории струн типов IIA и IIB отличаются тем, что в последней теории колебания в обоих направлениях идентичны, а в первой теории противоположны по форме. Противоположность в данном контексте имеет точный математический смысл, но нагляднее всего её можно представлять в терминах вращений колебательных мод в каждой теории. В теории типа IIB оказывается, что все частицы вращаются в одном направлении (у них одна и та же киральность), а в теории типа IIA — в разных направлениях (у них разная киральность). Тем не менее, в каждой теории реализуется суперсимметрия. Две гетеротические теории имеют аналогичные, но более эффектные отличия. Все моды колебаний по часовой стрелке выглядят так же, как и моды струн типа II (если рассматривать только колебания по часовой стрелке, то теории струн типов IIA и IIB идентичны), но колебания против часовой стрелки совпадают с колебаниями исходной теории бозонных струн. Хотя в бозонных струнах возникают неразрешимые проблемы, если рассматривать их колебания в обоих направлениях, в 1985 г. Дэвид Росс, Джеффри Харви, Эмиль Мартинек и Райан Ром (все они в то время работали в Принстонском университете и их прозвали «Принстонский струнный квартет») показали, что при использовании этих струн в комбинации со струнами типа II получается вполне согласованная теория. Однако в этом союзе была странная особенность, известная со времён работ Клода Лавлейса из университета Ратчерса 1971 г. и Ричарда Броуэра из Бостонского университета, Питера Годдарда из Кембриджского университета и Чарльза Торна из Гейнсвилльского университета (штат Флорида) 1972 г. А именно, для бозонной струны требовалось 26 пространственно-временных измерений, а для суперструны, как обсуждалось, требовалось 10. Так что гетеротические струны (от греческого ετερος, т. е. разный) являются странными гибридами, в которых колебательные моды против часовой стрелки живут в 26 измерениях, а колебательные моды по часовой стрелке — в 10! Пока читатель окончательно не запутался, пытаясь понять этот странный союз, сообщим ему о работе Гросса и его коллег, в которой было показано, что 16 лишних бозонных измерений должны скручиваться в одно из двух торообразных многообразий очень специального вида, приводя к теориям O- и E-гетеротических струн. Так как 16 добавочных бозонных измерений компактифицированы, каждая из этих теорий ведёт себя так, как если бы в ней было 10 измерений, т. е. как теории струн типа II. В гетеротических теориях также реализован свой вариант суперсимметрии. И, наконец, теория типа I аналогична теории IIB, за исключением того, что помимо замкнутых струн, рассмотренных в предыдущих главах, в ней имеются струны со свободными концами, называемые открытыми струнами.
79
Понятие «точный» в смысле данной главы (например, «точное» уравнение движения Земли) в действительности относится к точному предсказанию некоторой физической величины в рамках выбранного теоретического формализма. До тех пор, пока у нас не будет истинной окончательной теории (возможно, она уже есть, а возможно, её вообще не будет) все наши теории сами являются приближениями реальности. Но это понятие приближения не имеет никакого отношения к приближениям, рассматриваемым в данной главе. Здесь нас интересует тот факт, что в рамках выбранной теории часто сложно или невозможно сделать точные предсказания. Вместо этого приходится искать эти предсказания с помощью приближённых методов в рамках теории возмущений.
80
Эти диаграммы являются струнными вариантами так называемых диаграмм Фейнмана, предложенных Ричардом Фейнманом для вычислений по теории возмущений в квантовой теории поля точечных частиц.
81
Для читателя, осведомлённого в математике, отметим, что в силу этого уравнения пространство-время должно иметь Риччи-плоскую метрику. Если разбить пространство-время на прямое произведение четырёхмерного пространства Минковского и шестимерного компактного кэлерова многообразия, то обращение в нуль кривизны Риччи будет эквивалентно требованию того, что кэлерово многообразие должно быть многообразием Калаби — Яу. Вот почему многообразия Калаби — Яу так важны в теории струн.
82
Для знающего читателя должно быть ясно, что для справедливости этих утверждений потребуется так называемая N = 2 суперсимметрия.
83
Более точно, если обозначить константу связи O-гетеротической струны символом gОГ, а константу связи струны типа I символом gI, то соотношение между константами, для которых состояния в данных физических теориях эквивалентны, имеет вид gОГ = 1/gI или gI = 1/gОГ. Если одна из констант связи мала, то другая константа велика, и наоборот.
84
Это близкий аналог рассмотренной выше (R, 1/R) дуальности. Если обозначить константу связи струны типа IIB через gIIB, то кажется правдоподобной гипотеза, что значения констант gIIB и 1/gIIB приводят к одинаковым физическим результатам. Если gIIB велико, то 1/gIIB мало, и наоборот.
85
Заметным исключением явилась важная работа 1987 г. Даффа, Поля Хоува, Такео Инами и Келлога Стелле, в которой более ранние наблюдения Эрика Бергшоеффа, Эргина Сезгина и Таунсенда использовались для обоснования того, что десятимерная теория струн может иметь глубокую связь с 11-мерной теорией.
86
Интервью с Эдвардом Виттеном, 11 мая 1998 г.
87
Знающему читателю будет понятно, что при преобразованиях зеркальной симметрии коллапсирующая трёхмерная сфера одного пространства Калаби — Яу отображается на коллапсирующую двумерную сферу другого пространства Калаби — Яу, приводя, на первый взгляд, к той же ситуации флоп-перестроек, которая рассматривалась в главе 11. Разница, однако, в том, что в подобном зеркальном описании антисимметричное тензорное поле Bμν (действительная часть комплексной кэлеровой формы на зеркальном пространстве Калаби — Яу) обращается в нуль, и сингулярность гораздо сильнее, чем в случае, который описывался в главе 11.
88
Более точно, примерами экстремальных чёрных дыр являются чёрные дыры с минимальными для данных зарядов массами, в полной аналогии с рассмотренными в главе 12 БПС-состояниями. Такие чёрные дыры будут играть важнейшую роль при обсуждении энтропии чёрной дыры.
89
Так как чёрные дыры, участвующие в конифолдных переходах с разрывом пространства, являются экстремальными, оказывается, что ни при каких малых массах они не излучают по Хокингу.