Параллельное и распределенное программирование на С++ - Хьюз Камерон
Шрифт:
Интервал:
Закладка:
//. . .
return(sem_post(Semaphore));
}
Итак, теперь функции lock (), unlock (), trylock () и тому подобные заключают в оболочку семафорные функции библиотеки POSIX, а не функции библиотеки Pthread. Важно отметить, что семафор и мьютекс — не одно и то же. Но их можно использовать в аналогичных ситуациях. Зачастую с точки зрения инструкций, которые реализуют параллелизм, механизмы функций lock() и unlock() имеют одно и то же назначение. Некоторые основные различия между мьютексом и семафором указаны в табл. 11.2.
Таблица 11.2. Ос н овные различия между мью т ексами и семафорами
• Характеристики мьютексов
• Мьютексы и переменные условий разделяются между потоками
• Мьютекс деблокируется теми же потоками, которые его заблокировали
• Мьютекс либо блокируется, либо деблокируется
• Характеристики семафоров
• Семафоры обычно разделяются между процессами, но их разделение возможно и между потоками
• - Освобождать семафор должен необязательно тот процесс или поток, который его удерживал
• Семафоры управляются количеством ссылок. Стандарт POSIX включает именованные семафоры
Несмотря на важность различий в семантике (см. табл. 11.2), часто их оказывается недостаточно для оправдания применения к семафорам и мьютексам совершенно различных интерфейсов. Поэтому мы оставляем «полуширокий» интерфейс для функций lock(), unlock() и trylock() с одним предостережением: программист должен знать различия между мьютексом и семафором. Это можно сравнить с ситуацией, которая возникает с такими «широкими» интерфейса м и таких контейнерных классов, как deque, queue, set, multiset и пр. Эти контейнерные классы связаны общим интерфейсом, но их семантика в определенных областях различна. Используя понятие интерфейсного класса, можно разработать соответствующие компоненты синхронизации для мьютексов, переменных условий, мьютексов чтения-записи и семафоров. Имея такие компоненты, мы можем спроектировать безопасные (с точки зрения параллелизма) контейнерные, доменные и каркасные классы. Мы можем также применять интерфейсные классы для обеспечения единого интерфейса с различными версиями одной и той же библиотеки функций при необходимости использования обеих версий (по разным причинам) в одном и том же приложении. Иногда интерфейсный класс может быть успешно применен для безболезненного перехода от устарелых функций к новым. Если мы хотим оградить программиста от различий, существующих между операционными системами, то наша цель — обеспечить его соответствующим АРI-интерфейсом [18], независимо от того, какая библиотека семафорных функций используется в среде: System V или POSIX.
Поддержка потокового представления
Помимо использования интерфейсных классов для упрощения программирования и создания новых «широких» интерфейсов библиотек средств параллелизма и передачи сообщений, имеет смысл также расширить существующие интерфейсы. Например, объектно-ориентированное представление потоков данных можно расширить за счет использования каналов, FIFO-очередей и таких библиотек передачи сообщений, как PVM и MPI. Эти компоненты используются ради достижения межпроцессного взаимодействия (Inter-Process Communication — IPC), межпотокового взаимодействия (Inter-Thread Communication — ITC), а в некоторых случалх и взаимодействия между объектами (Object-to-Object Communicaton — OTOC). Если взаимодействие имеет место между параллельно выполняемыми потоками или процессами, то канал связи может представлять собой критический раздел. Другими словами, если несколько процессов (потоков) попытаются одновременно обновить один и тот же канал, FIFO-очередь или буфер сообщений, непременно возникнет «гонка» данных. Если мы собираемся расширить объектно-ориентированный интерфейс потоков данных за счет включения компонентов из библиотеки PVM или MPI, нам нужно быть уверенными в том, что доступ к этим потокам данных будет безопасен с точки зрения параллелизма. Именно здесь могут пригодиться наши компоненты синхронизации, спроектированные в виде интерфейсных классов. Рассмотрим простой класс pvm_stream.
// Листинг 11.12. Объявление класса pvm_stream, который
// наследует класс mios
class pvm_stream : public mios{
protected:
int TaskId;
int MessageId;
mutex Mutex;
//...
public:
void taskId(int Tid);
void messageId(int Mid);
pvm_stream(int Coding=PvmDataDefault);
void reset(int Coding = PvmDataDefault);
pvm_stream &operator<<(string &Data);
pvm_stream &operator>>(string &Data);
pvm_stream &operator>>(int &Data);
pvm_stream &operator<<(int &Data);
//. . .
};
Этот класс обработки потоков данных предназначен для инкапсуляции состояния активного буфера в PVM-задаче. Операторы вставки "<<" и извлечения ">>" можно использовать для отправки и приема сообщений между PVM-процессами. Здесь мы рассмотрим использование этих операторов только для обработки строк и значений типа int. Интерфейс этого класса далек от совершенства. Поскольку этот класс предназначен для обработки данных любого типа, мы должны расширить определения операторов "<<" и ">>". А так как мы планируем использовать класс pvm_stream в многопоточной программе, мы должны быть уверены в том, что объект класса pvm_stream безопасен для потоков. Поэтому мы включаем в качестве члена нашего класса pvm_stream класс mutex. Поскольку сообщение может быть направлено для конкретной PVM-задачи, класс pvm_stream инкапсулирует для нее активный буфер. Наша цель — использовать классы ostream и istream в качестве «путеводителя» по функциям, которые должен иметь класс pvm_stream. Вспомним, что классы ostream и istream являются классами трансляции. Они переводят типы данных в обобщенные потоки байтов при выводе и обобщенные потоки байтов в конкретные типы данных при вводе. Используя классы istream и ostream, программисту не нужно погружаться в детали вставки в поток или выделения из потока данных того или иного типа. Мы хотим, чтобы и поведение класса pvm_stream было аналогичным. Библиотека PVM располагает различными функциями для каждого типа данных, которые необходимо упаковать в буфер отправки или распаковать из буфера приема. Например, функции pvm_pkdouble () pvm_pkint () pvm_pkfloat() используются для упаковки double-, int- и float-значений соответственно. Аналогичные функции существуют и для других типов данных, определенных в С++. Мы бы хотели поддерживать наше потоковое представление, т.е. чтобы ввод и вывод данных можно было представить как обобщенный поток байтов, который перемещается в программу или из нее. Следовательно, мы должны определить операторы вставки (<<) и извлечения (>>) для каждого типа данных, который мы собираемся использовать при обмене сообщениями между PVM-задачами. Мы также моделируем состояние потока данных в соответствии с классами istream и ostream, которые содержат компонент ios, предназначенный для хранения состояния этого потока. Поток данных может находиться в состоянии ошибки либо в одном из различных состояний, которые выражаются восьмеричным, десятичным или шестнадцатеричным числом. Поток также может пребывать в нормальном, заблокированном или состоянии конца файла. Класс pvm_stream должен не только содержать компонент, который поддерживает состояние потока данных, но и методы, которые устанавливают заданное или исходное состояние PVM-задачи, а также считывают его. Наш класс pvm_stream для этих целей содержит компонент mios. Этот компонент поддерживает состояние потока данных и активного буфера отправки и приема информации. На рис. 11.4 представлены две диаграммы классов: одна отображает отношения между основными классами библиотеки iostream, а вторая — отношения между классом pvm_stream и ero компонентами.