- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Математические головоломки и развлечения - Мартин Гарднер
Шрифт:
Интервал:
Закладка:
Самым знаменитым среди парадоксов теории вероятностей следует считать петербургский парадокс, впервые изложенный в «Мемуаре», который знаменитый математик Даниил Бернулли представил Санкт-Петербургской Академии. Предположим, что я бросаю монету и согласен уплатить вам доллар, если выпадет орел.
В случае же выпадения решки я бросаю монету второй раз и плачу вам два доллара, если при втором подбрасывании выпадет орел.
Если же снова выпадет решка, я бросаю монету в третий раз и плачу вам четыре доллара, если при третьем подбрасывании выпадает орел. Короче говоря, с каждым разом я удваиваю выплачиваемую сумму. Бросать монету я продолжаю до тех пор, пока вы не остановите игру и не предложите мне расплатиться. Какую сумму вы должны заплатить мне, чтобы я согласился играть с вами в эту «одностороннюю игру», а вы не остались в убытке?
В ответ трудно поверить: сколько бы вы мне ни платили за каждую партию, пусть даже по миллиону долларов, вы все равно сможете с лихвой окупить свои расходы. В каждой отдельно взятой партии вероятность того, что вы выиграете один доллар, равна 1/2, вероятность выиграть два доллара равна 1/4, четыре доллара— 1/8 и т. д. В итоге вы можете рассчитывать на выигрыш в сумме — (1 х 1/2) + (2 х 1/4) + (4 х 1/8)… Этот бесконечный ряд расходится: его сумма равна бесконечности. Следовательно, независимо от того, какую сумму вы будете выплачивать мне перед каждой партией, проведя достаточно длинный матч, вы непременно окажетесь в выигрыше. Делая такое заключение, мы предполагаем, что мой капитал неограничен и мы можем проводить любое число партий.
Разумеется, если вы заплатили за право сыграть одну партию, например 1000 долларов, то с весьма высокой вероятностью вы эту партию проиграете, но ожидание проигрыша с лихвой компенсируется шансом, хотя и небольшим, выиграть астрономическую сумму при выпадении длинной серии из одних лишь орлов. Если же мой капитал, как это имеет место в действительности, ограничен, то и разумная плата за право сыграть партию также должна иметь верхний предел. Петербургский парадокс возникает в любой азартной игре с удваивающимися ставками. Подробный анализ этого парадокса приводит ко всякого рода тонким вопросам обоснования теории вероятностей.
Карл Хемпель, глава школы «логических позитивистов», профессор философии Принстонского университета, открыл еще один удивительный парадокс. Со времени первой публикации (в 1937 году) и поныне «парадокс Хемпеля» неизменно служит предметом высокоученых споров между специалистами по философии науки, ибо он затрагивает самую сущность научного метода.
Предположим, пишет Хемпель, что ученый хочет исследовать гипотезу «все вороны черные». Его исследование состоит в изучении как можно большего числа ворон. Чем больше он найдет черных ворон, тем более вероятной становится его гипотеза. Таким образом, каждая черная ворона может рассматриваться как пример, подтверждающий гипотезу. Большинство ученых считает, что они отчетливо представляют себе, что такое подтверждающий пример. Парадокс Хемпеля мгновенно рассеивает их иллюзии, так как с помощью железной логики мы можем легко доказать, что красная корова тоже является подтверждающим примером гипотезы «все вороны черные»! Вот как это делается.
Утверждение «все вороны черные» можно преобразовать в логически эквивалентное ему утверждение «все нечерные предметы — не вороны» способом, который в логике принято называть «прямым доказательством через обращение». Второе утверждение по смыслу тождественно первому; оно просто иначе сформулировано.
Очевидно, что существование любого объекта, подтверждающего второе утверждение, должно также подтверждать и первое.
Предположим, ученый ищет нечерные предметы для подтверждения гипотезы о том, что все такие предметы не являются воронами. Он сталкивается с каким-то красным предметом. Более близкое знакомство показывает, что это не ворона, а корова. Красная корова, безусловно, является подтверждающим примером положения «все нечерные предметы — не вороны» и поэтому увеличивает вероятность того, что логически эквивалентная гипотеза «все вороны черные» справедлива. Подобная аргументация, безусловно, применима и к белому слону, и к красной селедке, и к зеленому галстуку самого ученого. Как выразился недавно один философ, орнитолог, изучающий цвет ворон, мог бы продолжить свои исследования и в дождливый день, даже не замочив при этом ног. Для этого ему достаточно оглядеться в собственной комнате и отметить примеры всех нечерных предметов, не являющихся воронами!
Как и в предыдущих примерах парадоксов, трудность здесь, по всей видимости, кроется не в ошибочном рассуждении, а в том, что Хемпель называет «заблуждением интуиции».
Все сказанное приобретает еще больший смысл, если рассмотреть пример попроще. В фирме работает много машинисток, у некоторых из них рыжие волосы. Мы хотим проверить гипотезу о том, что все рыжие машинистки замужем. Проще всего подойти к каждой рыжей машинистке и спросить, есть ли у нее муж. Но есть и другой способ, может быть, даже более эффективный. Мы берем в отделе кадров список всех незамужних машинисток, затем подходим к девушкам из этого списка, чтобы увидеть, какого цвета у них волосы. Если ни одна из обследуемых не будет рыжей, то гипотеза полностью подтверждена. Никто не станет возражать против того, что каждая незамужняя машинистка, цвет волос которой отличается от рыжего, будет подтверждающим примером теории о том, что все служащие в данной фирме рыжие машинистки замужем.
Согласившись с предложенной выше программой обследования нечерных предметов, не являющихся в то же время воронами, или цвета волос машинисток, мы столкнемся с небольшим затруднением: малым числом обследуемых объектов. Если же мы попытаемся установить, все ли вороны черные, то обнаружится огромная диспропорция между числом всех ворон на земле и числом нечерных предметов. Каждый согласится, что проверка всех нечерных предметов представляет собой весьма неэффективный способ исследования. Наш вопрос несколько тоньше: есть ли рациональное зерно в утверждении о том, что обнаружение красной коровы в том или ином смысле может служить примером, подтверждающим выдвинутую гипотезу? Становится ли наша первоначальная гипотеза хоть немного более правдоподобной при обнаружении подтверждающего примера, по крайней мере если речь идет о конечных множествах (рассмотрение бесконечных множеств завело бы нас слишком далеко)? Одни логики считают, что подтверждающий пример увеличивает правдоподобие гипотезы, другие в этом сомневаются. Они замечают, например, что красную корову точно с таким же основанием можно считать подтверждающим примером гипотезы «все вороны белые». Каким образом обнаружение отдельного объекта может изменить правдоподобие одной из двух взаимоисключающих гипотез?
Некоторые пытаются отделаться от парадокса Хемпеля смущенной улыбкой и недоуменным пожиманием плечами. Не следует забывать, однако, что многие логические парадоксы, которые долгое время считались пустыми забавами, безделушками, сыграли чрезвычайно важную роль в развитии современной логики. Точно так же анализ парадокса Хемпеля уже позволил глубоко проникнуть в существо некоторых сложных проблем индуктивной логики, основного средства получения всех научных результатов.
Глава 6. «ИКОСАЭДРИЧЕСКАЯ ИГРА» И «ХАНОЙСКАЯ БАШНЯ»
Вряд ли что-нибудь может произвести большее впечатление на математика, чем открытие связи между двумя на первый взгляд никак не связанными между собой математическими структурами.
Именно такое открытие сделал Д. У. Кроув. Он обнаружил связь между двумя популярными головоломками прошлого века — «Икосаэдрической игрой» и «Ханойской башней». Сначала мы расскажем о каждой головоломке в отдельности, а затем покажем ту неожиданную связь, которая существует между ними.
Игру с икосаэдром придумал в пятидесятых годах прошлого века знаменитый ирландский математик Уильям Р. Гамильтон. На примере этой игры он хотел продемонстрировать некоторые не совсем обычные свойства разработанного им исчисления, во многом схожего с принадлежащей тому же автору теорией кватернионов (предшественницей современного векторного анализа). Исчисление позволяло решать ряд сложных задач об обходе ребер пяти новых, тел, и в частности икосаэдра и додекаэдра. Гамильтон назвал свое исчисление икосаэдрическим, хотя в действительности в придуманной им игре приходится совершать обход ребер додекаэдра.
В 1859 году Гамильтон продал игру за 25 долларов одному лондонскому дельцу. Позднее она в различных видах появлялась в Англии и других европейских странах. Биограф Гамильтона сообщает, что эти 25 долларов были единственными деньгами, которые получил известный математик за свои открытия и научные труды.

