- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ - Александр Соловьев
Шрифт:
Интервал:
Закладка:
Тьюринг не был автостроителем. Машина Тьюринга не предполагает двигателя внутреннего сгорания, поскольку все там перемещается исключительно силой мысли. Это математическая модель. Она чем-то может и напоминающая автомашину, но не более чем машину напоминает магнитофон, в котором лента (разделенная на ячейки) неподвижна, а считывающе-записывающая головка вдоль нее ездит. Хуже того, ездит головка рывками, от ячейки к ячейке. А в ячейках записаны символы. (Чтобы не было пустых ячеек, в пустые ячейки записывают специальный пустой символ).
В машине Тьюринга есть устройство управления, имеющее память «состояний» и работающее по задаваемой программе (алгоритму). Программа состоит из команд. Каждая «команда» состоит в следующем: Машина читает символ из ячейки, против которой стоит головка (находясь в каком-то состоянии [вначале – в начальном]), записывает в эту ячейку символ (может и тот же самый), меняет свое состояние (может сохранить прежнее) и делает шаг влево или вправо (может остаться на месте).
Так Машина ходит вдоль ленты до тех пор, пока не перейдет в специальное состояние, называемое заключительным. Это говорит об окончании работы Машины (алгоритма). А на ленте остается результат (решения).
Пример. Построим Машину, которая в сплошной последовательности единичек стирает последнюю.
Поскольку количество единичек в сплошной последовательности произвольное и неизвестное, последнюю определим как ту, которая стоит ПЕРЕД пустым символом. Это главная идея данного решения. Остальное – дело техники. Напишем программу – четыре команды.
Машина читает пустой символ, находясь в начальном состоянии пишет пустой символ и делает шаг вправо. (Значит машина находится ДО начала последовательности единичек)
Машина читает единичку, находясь в начальном состоянии, пишет единичку и делает шаг вправо, оставаясь в этом состоянии. (Значит машина «идет» по последовательности единичек)
Машина читает пустой символ, находясь в начальном состоянии, пишет пустой символ, делает шаг влево и переходит во второе состояние. (Значит найдена последняя единичка)
Машина читает единичку, находясь во втором состоянии, пишет пустой символ (стирает единичку), стоит на месте и переходит в заключительное состояние. (Задача решена)
Несмотря на внешнюю примитивность такой конструкции, для любой алгоритмически разрешимой задачи можно построить Машину Тьюринга! А поскольку машина строится в собственной голове, вопросы «технической эффективности» такой машины никакой роли не играют. Единственный вопрос. Доберется ли машина до заключительного состояния? Пусть и через (воображаемый) миллион лет. Тогда задача разрешима!
Не будет преувеличением сказать, что нормальные алгорифмы Маркова создал А.А.Марков, член-корреспондент Академии Наук СССР из Москвы. Для восстановления единообразия, по праву автора, он назвал алгориТмы алгориФмами, поскольку слово это арабо-греческое, как и слово ариФметика…
Смысл нормальных алгорифмов – принудительный обмен, порядок которого жестко задан.
Собственно алгоритм в нормальных алгорифмах задается НОРМАЛЬНОЙ СХЕМОЙ ПОДСТАНОВОК – очередностью правил «что на что менять». Лучше всего это показать на примере замены слов, тем более, что и сам Марков любую последовательность букв, какую ни в одном словаре не сыщешь, называл «словами». Так при наличии двух подстановок: меняющей «ха» на «ссон» и «мусс» на «сл» из «муха» можно сделать «слон».
Механизм нормальных алгоритмов настолько прост, что напоминает скорее детскую игру, чем математику. Но на самом деле это очень мощный механизм, поскольку через него можно выразить решение любой алгоритмически разрешимой задачи. И опять напомним, что это не следует воспринимать, как предложение решать любую задачу через подстановки (хотя на этих принципах работает замечательный язык программирования РЕФАЛ). Это лишь означает, что любую алгоритмически разрешимую задачу МОЖНО представить в виде такой системы подстановок. А если нельзя (и вы это смогли доказать), то такая задача вообще не имеет алгоритма решения.
Лекция 12. ФОРМАЛЬНЫЕ ГРАММАТИКИ
Формальные грамматики – это хорошо развитый математический аппарат, позволяющий, кроме изучения «высоких материй», (математически) грамотно создавать языки программирования и писать компиляторы для этих языков.
Между естественными и формальными языками непреодолимая пропасть. Поэтому совпадение терминологии лучше считать случайным… Тем более, в рамках многогранного и разветвленного ЯЗЫКА МАТЕМАТИКИ раздел формальных грамматик и языков ориентирован прежде всего на проблемы построения компиляторов.
Формальный язык можно задать как некое множество слов. Слово, это последовательность символов. Любая компьютерная программа в этом случае тоже воспринимается как слово. Пробелы в ней – специальные символы, для которых на клавиатуре выделена самая длинная клавиша.
Словами данного языка может быть далеко не любая абракадабра, доступная клавиатуре. А только лексически и синтаксически (безупречно!) правильные программы. Безупречная с точки зрения грамматики программа может быть бесполезной, бессмысленной или даже вредной. Но за правильную работу программы формальная грамматика и компилятор не отвечают. (Повторим, математика обычно смыслом не занимается).
Поскольку и здесь, в формальных грамматиках и языках, математика за смысл не отвечает. Есть специальное направление в теоретическом программировании, когда на формальном языке (обычно на языке предикатов и его диалектах) описывается, что должна делать программа. На основании этого описания специальная система синтезирует программу. Однако, это тема совсем другого разговора. Тем более, что ошибок в описании того, что должна делать программа, человек допускает больше, чем при написании программы непосредственно.
Для того, чтобы задать грамматику, надо задать множества ТЕРМИНАЛЬНЫХ и НЕТЕРМИНАЛЬНЫХ символов. Терминальные символы это символы используемые в языке. Нетерминальные (промежуточные) символы – это символы, используемые в создании (порождении) слов языка. А создаются слова по грамматическим правилам. И каждое слово, напомним, это с точки зрения программиста – программа, записанная исключительно терминальными символами. Далее задаются ГРАММАТИЧЕСКИЕ ПРАВИЛА. Они очень напоминают подстановки в алгорифмах Маркова. Но в отличие от последних порядок применения грамматических правил произвольный. Применение правила заключается в замене в преобразуемой строке какой-то последовательности символов, совпадающей с левой частью какого-то правила, правой частью (последовательностью символов) этого правила.
Введем в оборот из чисто эстетических соображений еще один красивый термин – СЕНТЕНЦИАЛЬНАЯ ФОРМА. Дело в том, что при построении программ в формальных грамматиках всегда танцуют от одного начального нетерминального символа. Обозначим этот символ «программа». Вместо этого символа по одному из грамматических правил происходит подстановка соответствующей правой части, которая может содержать последовательность из каких-то нетерминальных и терминальных символов. Кстати, такой процесс называется НЕПОСРЕДСТВЕННЫМ ПОРОЖДЕНИЕМ. Любой их появившихся нетерминальных символов может быть заменен по подходящему грамматическому правилу какой-то цепочкой символов. То есть начальный нетерминальный символ «программа» последовательно превращается во все более длинную цепочку символов. И так вплоть до того момента, когда в последовательности символов останутся только терминальные символы. То есть будет получено слово данного языка (по иронии судьбы называемое ПРЕДЛОЖЕНИЕМ). Все последовательности символов, которые в процессе непосредственных порождений находятся между начальным нетерминальным символом и конечным предложением и называются сентенциальными формами. А нам остается радоваться, что английский язык нам неродной.
Компилятор, получив программу, выполняет обратную работу. Пред'явленное предложение он свертывает по грамматическим правилам (теперь двигаясь от правой части правила к левой) начального символа «программа».
Обычно существует огромное количество вариантов как порождения, так и свертывания. Если свертывание потерпело неудачу, то должны исследоваться другие варианты. Слово будет признано НЕпринадлежащим данному языку (грамматике), если ни один из вариантов свертывания не приведет к удаче. Поскольку такой перебор вариантов на практике как правило неприемлем, то и грамматики пытаются придумывать не случайные, а с полезными свойствами. А способы свертывания (распознавания) используют эти хорошие свойства, чтобы минимизировать или вообще исключить блуждания.

