Категории
Самые читаемые
Лучшие книги » Документальные книги » Публицистика » Российская Академия Наук - Алексей Турчин

Российская Академия Наук - Алексей Турчин

Читать онлайн Российская Академия Наук - Алексей Турчин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 98 99 100 101 102 103 104 105 106 ... 119
Перейти на страницу:

Или в общих исследованиях по ИИ не будут уделять достаточного внимания рискам сильного ИИ, и в силу этого хорошие инструменты и твёрдые установления для Дружественности окажутся недоступными, когда возникнет возможность создавать мощные интеллекты.

И также следует заметить – поскольку это тоже влияет на глобальные риски – что ИИ может быть мощным решением для других глобальных рисков, и по ошибке мы можем игнорировать нашу лучшую надежду на выживание. Утверждение о недооценке потенциального воздействия ИИ симметрично относительно потенциально хороших и потенциально плохих воздействий. Именно поэтому название этой статьи – «Искусственный интеллект как позитивный и негативный фактор глобального риска», а не «Глобальные риски Искусственного интеллекта». Перспектива ИИ влияет на глобальные риски более сложным образом; если бы ИИ был чистой помехой, ситуация была бы проще.

4. Способности и мотивы.

Есть один вид ошибочности, часто встречающийся в дискуссиях об ИИ, особенно об ИИ со сверхчеловеческими способностями. Кто-нибудь говорит: «Когда технологии продвинутся достаточно далеко, мы будем способны создавать интеллекты, далеко превосходящие человеческие. Очевидно, что размер ватрушки, который вы можете испечь, зависит от вашего интеллекта. Суперинтеллект может создавать гигантские ватрушки – ватрушки, размером с города – боже мой, будущее будет полно гигантских ватрушек!» Вопрос в том, захочет ли суперинтеллект создавать огромные ватрушки. Видение образа ведёт прямо от возможности к реализации, без осознавания необходимого промежуточного элемента – мотива. Следующие цепочки рассуждений, рассматриваемые в изоляции без подтверждающего доказательства, все являются примером Ошибочных рассуждений в духе Гигантской Ватрушки:

- Достаточно сильный ИИ может преодолеть любое человеческое сопротивление и истребить человечество. (И ИИ решит сделать это.) Поэтому мы не должны строить ИИ.

- Достаточно сильный ИИ может создать новые медицинские технологии, способные спасти миллионы человеческих жизней. (И он решит сделать это.) Поэтому мы должны создать ИИ.

- Когда компьютеры станут достаточно дёшевы, огромное большинство работ будет выполняться ИИ более легко, чем людьми. Достаточно сильный ИИ даже будет лучше нас в математике, конструировании, музыке, искусстве и во всех других работах, которые нам кажутся важными (И ИИ решит выполнять эти работы.) Таким образом, после изобретения ИИ, людям будет больше нечего делать, и мы будем голодать или смотреть телевизор.

4.1. Процессы оптимизации.

Вышеприведенный разбор ошибочных рассуждений в духе Гигантской Ватрушки имеет органически присущий ему антропоморфизм – а именно, идею о том, что мотивы разделимы; то есть подразумеваемое предположение о том, что, говоря о «способностях» и «мотивах», мы разрываем связность реальности. Это удобный срез, но антропоморфический.

Для того, чтобы рассмотреть проблему с более общей точки зрения, я ввёл концепцию процесса оптимизации, то есть процесса, который попадает в маленькие мишени в большом пространстве поиска, чтобы порождать согласованные эффекты в реальном мире.

Процесс оптимизации направляет будущее в определённые регионы возможного. Например, когда я посещаю удалённый город, мой друг из местных вызывается отвезти меня в аэропорт. Я не знаю окрестностей. Когда мой друг выезжает на перекрёсток, я не могу предсказать его повороты, ни в последовательности, ни по отдельности. Но я могу предсказать результат непредсказуемых действий моего друга: мы прибудем в аэропорт. Даже если дом моего друга находится в другом месте города, так что моему другу придётся совершить совершенно другую последовательность поворотов, я могу с той же степенью уверенности предсказать, куда мы, в конце концов, прибудем. Не странная ли эта ситуация, научно говоря? Я могу предсказать результат процесса, будучи неспособным предсказать ни один из его промежуточных этапов. Я буду называть область, в которую процесс оптимизации направляет будущее, целью оптимизации.

Рассмотрим автомобиль, например, Тойоту Кароллу. Из всех возможных комбинаций атомов, которые её составляют, только бесконечно малая часть будет работающим автомобилем. Если вы будете собирать атомы в случайном порядке, много-много возрастов Вселенной пройдёт, пока вам удастся собрать автомобиль. Малая доля пространства проектов описывает автомобили, которые мы могли бы признать как более быстрые, более эффективные и более безопасные, чем Королла. Таким образом, Королла не является оптимальной с точки зрения целей своего конструктора. Но Королла является, однако, оптимизированной, поскольку конструктор должен был попасть в сравнительно бесконечно малую область в пространстве возможных конструкций, только чтобы создать работающий автомобиль, не говоря уже о машине качества Короллы. Вы не можете построить даже эффективную тележку, распиливая доски случайно и сколачивая их по результатам броска монеты. Чтобы достичь такой малой цели в пространстве конфигураций, необходим мощный оптимизационный процесс.

Понятие о «процессе оптимизации» является предсказательно полезным, поскольку легче понять цель процесса оптимизации, чем его пошаговую динамику. Обсуждение Короллы выше неявно предполагает, что конструктор Короллы пытался создать «автомобиль», средство транспорта. Это предположение следует сделать явным, но оно не ошибочно и оно очень полезно для понимания Короллы.

4.2. Наведение на цель.

Есть соблазн спросить, что ИИ будет хотеть, забывая о том, что пространство умов-вообще гораздо больше, чем малая точка, соответствующая человеческим умам. Следует сопротивляться соблазну распространить количественные ограничения на все возможные умы. Рассказчики историй накручивают сказки об отдалённой и экзотичной земле, называемой Будущее, говоря, каким будущее должно быть. Они делают предсказания. Они говорят: «ИИ нападёт на людей с помощью армий марширующих роботов» или «ИИ изобретёт лекарство от рака». Они не предлагают сложных отношений между изначальными условиями и результатами – так они могли бы потерять аудиторию. Но мы нуждаемся в понимании соотношений, чтобы управлять будущим, направляя его в область, приятную человечеству. Если не рулить, мы рискуем попасть туда, куда нас занесёт.

Главный вызов состоит не в том, чтобы предсказать, что ИИ атакует людей с помощью армий роботов, или, наоборот, введёт лекарство от рака. Задача состоит даже не в том, чтобы сделать это предсказание для произвольного устройства ИИ. Скорее, задача состоит в том, чтобы выбрать и создать такой процесс оптимизации, чьи позитивные эффекты могут быть твёрдо доказаны.

Я усиленно призываю своих читателей не начинать придумывать причины, почему универсальный процесс оптимизации должен быть дружественным. Естественный отбор не является дружественным, не ненавидит вас, не оставляет вас в одного. Эволюция не может быть таким образом антропоморфизирована, она работает не так, как вы.

Многие биологи до 1960-х годов ожидали, что естественный отбор создаст полный набор всех хороших вещей, и выдумывали всевозможные усложнённый причины, почему он должен сделать это. Они были разочарованы, поскольку естественный отбор сам по себе не начинает со знания, что от него хотят приятного человеку результата, и затем не придумывает сложные пути, чтобы создать приятные результаты, используя давление отбора. Таким образом, события в природе были результатами совершенно других по своим причинам процессов, чем те, что приходили в голову биологам до 1960-х годов, и поэтому предсказания и реальность расходились.

Мышление, привязанное к цели, добавляет детали, ограничивает предсказания и, таким образом, отягощает их невозможностью. Как насчёт инженера гражданских сооружений, который надеется, что мост не упадёт? Следует ли инженеру доказывать это тем, что мосты обычно не падают? Но природа сама по себе не предлагает разумных причин, почему мосты не должны падать. Скорее, это инженер преодоляет тяжесть недостоверности посредством специфического выбора, направляемого специфическим пониманием. Инженер начинает с намерения создать мост. Затем он использует строгую теорию, чтобы выбрать конструкцию моста, которая бы выдерживала автомобили. Затем строит реальный мост, чья структура отражает рассчитанный проект. И в результате реальная структура выдерживает автомобили. Таким образом достигается гармония предсказанных позитивных результатов и реальных позитивных результатов.

5. Дружественный ИИ.

Было бы очень здорово, если бы человечество знало, как создать мощный оптимизационный процесс с неким конкретным результатом. Или, говоря более общими словами, было бы здорово, если бы мы знали, как создать хороший ИИ.

1 ... 98 99 100 101 102 103 104 105 106 ... 119
Перейти на страницу:
На этой странице вы можете бесплатно скачать Российская Академия Наук - Алексей Турчин торрент бесплатно.
Комментарии