- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Квант - Джим Аль-Халили
Шрифт:
Интервал:
Закладка:
Нобелевская премия Эйнштейна
В 1921 году Альберту Эйнштейну вручили Нобелевскую премию за объяснение фотоэлектрического эффекта, что в то время считалось гораздо более значительным открытием, чем его знаменитая работа над теорией относительности.
Согласно Эйнштейну, каждый электрон испускается с поверхности вещества, когда его выбивает один фотон света, энергия которого зависит от его частоты. Эйнштейн утверждал, что обычно мы не видим, что свет состоит из частиц, поскольку фотонов очень много: точно так же мы не видим отдельные капли чернил на напечатанном изображении. Давайте рассмотрим, как эта картина справляется с тремя загадочными характеристиками фотоэлектрического эффекта.
С первой все просто. Зависимость энергии испускаемого электрона от частоты света, а не от его интенсивности является прямым следствием уравнения Планка, которое связывает энергию света с его частотой.
Вторая характеристика возникает потому, что порог для испускания электронов появляется только тогда, когда энергии фотона достаточно, чтобы освободить электрон. При повышении интенсивности света количество фотонов возрастает. Отдельные фотоны так малы и локализованы в пространстве, что вероятность того, что любой одиночный электрон может аккумулировать достаточно энергии, чтобы вылететь после столкновения с более чем одним фотоном, крайне мала.
Наконец, процесс происходит мгновенно, поскольку электронам не приходится накапливать энергию из волны, рассеянной в пространстве. Вместо этого каждый фотон передает свою энергию электрону посредством одного столкновения. Если эта энергия больше необходимого порога, электрон будет испущен.
Фотоэлектрический эффект представляет собой испускание электронов с поверхности металла под воздействием света. Однако представление о свете как о волне не объясняет результатов наблюдений. Объяснить их можно, только допустив, что свет состоит из отдельных частиц (фотонов).
Бор: физик, философ, футболист
Следующий шаг в квантовой революции был сделан молодым датским физиком по имени Нильс Бор, который в 1911 году приехал в Англию, только что получив докторскую степень и прихватив с собой полное собрание сочинений Чарльза Диккенса (по которому он изучал английский язык). Само собой, Бор еще не был известным физиком, но считал научную карьеру более надежной, чем футбольную, хотя на любительском уровне он преуспел и в спорте. Однако до уровня своего младшего брата Гарольда, который играл в защите за датскую команду на Олимпиаде 1908 года и проиграл матч за золото Великобритании, он не дотягивал. Гарольд впоследствии стал очень уважаемым математиком.
Жизни Нильса Бора и автора этой книги пересеклись всего на два месяца, так что мне, к сожалению, не довелось повстречаться с ним. А если бы мне все же довелось с ним познакомиться, наша беседа вряд ли вышла бы особенно продуктивной. Но я много лет сотрудничал с человеком, который знал его очень хорошо. Физик-теоретик Йенс Банг был последним научным ассистентом Бора, а потому он может многое рассказать об этом великом человеке и глубоко понимает его философские воззрения. Да, Бор-философ был едва ли не менее знаменит, чем Бор-ученый.
Он начал свое квантовое путешествие, когда в 1912 году устроился в Манчестере на работу к выходцу из Новой Зеландии Эрнесту Резерфорду. В то время Резерфорд был одним из ведущих ученых и в 1908 году получил Нобелевскую премию по химии, хотя и занимался физикой. Бор появился у него в лаборатории примерно тогда, когда Резерфорд разработал свою модель атома. Он только что выяснил, что атомы состоят из крошечного плотного ядра, которое окружено еще более крошечными электронами.
Бор попытался понять структуру модели атома Резерфорда и тем самым начал полувековую работу по объяснению сути квантовых феноменов. Именно его сегодня по праву и считают истинным отцом-основателем квантовой механики. Может, Планк и Эйнштейн и сделали первые шаги в эту область, но вклад Бора оказался гораздо существеннее.
Первый успех пришел к нему, когда он решил две проблемы, связанные со структурой атомов: установил происхождение линейчатого спектра и нашел объяснение стабильности атома.
Модель атома Резерфорда предполагала, что электроны находятся за пределами ядра на расстоянии, в тысячи раз превышающем радиус этого ядра. Такая картина сразу же ставила вопрос о стабильности атома. Прежде всего, физики были уверены, что электроны не могут находиться в покое внутри атомов, так как электрическая сила, источаемая положительно заряженным ядром, должна притягивать электроны внутрь. Так что проще всего было представить себе планетарную модель, в которой электроны постоянно вращались вокруг ядра, как Земля вращается вокруг Солнца, чтобы ее не притянуло к нему под действием гравитационных сил.
Однако Бора озадачило одно важное отличие атома от Солнечной системы (не считая их размеров, конечно). В соответствии с классической теорией электромагнетизма, вращающийся вокруг ядра электрон должен излучать свет. Следовательно, по мере потери энергии он будет по спирали приближаться к ядру. Этот процесс будет происходить очень быстро – примерно за одну тысячемиллионную долю секунды – и атомы будут схлопываться.
В ретроспективе идея Бора кажется очевидной, но в то время она произвела настоящий переворот. Он предположил, что если материя испускает излучение сгустками (как в случае с черными телами) и поглощает его тоже сгустками (фотоэлектрический эффект), то атомы, из которых состоит материя, возможно, просто не способны обладать энергией, значение которой равняется нецелому числу этих сгустков.
С этой идеей Бор зашел дальше Планка, который полагал, что квантование излучения происходит исключительно из-за колебаний атомов в теплых черных телах и не является чертой, характерной для всех атомов вследствие их внутренней структуры.
Бор допустил, что энергия электронов в атомах тоже состоит из квантов. В таком случае электроны не могут выбирать любую орбиту, как было бы возможно в соответствии с законами движения Ньютона, а вынуждены следовать по определенным «отдельным» орбитам, подобным концентрическим кругам. Электрон может перескочить на более низкую орбиту, только испустив квант электромагнитной энергии (фотон). Точно так же перепрыгнуть на более высокую орбиту он может, только поглотив фотон. Впоследствии стабильность атомов более подробно изучил молодой немецкий гений Вольфганг Паули, который доказал, что каждая электронная орбита может вместить только определенное количество электронов. В связи с этим электроны могут перепрыгивать на более низкую орбиту, только если там для них есть место. Позже мы увидим, что электроны нельзя считать крошечными частицами, вращающимися вокруг ядра, поскольку каждый из них является распространенной волной, а каждая из этих «электронных волн» замыкается в кольцо вокруг ядра.
Предложенная Бором модель атома водорода состояла из электрона на

