Путь к звездам (сборник) - Константин Циолковский
Шрифт:
Интервал:
Закладка:
На крохотных планетках нет атмосфер и жидкостей, но в них сколько угодно гидратной и конституционной воды, газов, металлоидов и металлов всех сортов. Стоит только разложить химически сухие минералы.
Нам нужны механические силы. Откуда их взять? Механической силы в нашей эфирной области в две тысячи миллионов раз больше, чем на Земле. Она заключается в лучах Солнца. Извлечь ее можно через посредство растений и прямо — от солнечных лучей. Солнце может нам давать древесину, уголь, крахмал, сахар и все бесчисленное множество веществ, доставляемых и сейчас растениями на Земле. Они такой же источник силы, как и каменный уголь, водопады и ветер на нашей планете. Этот источник энергии используется как на Земле, т. е. в жилищах, где есть кислород. Но это неудобно, так как скоро портит их атмосферу.
Можно и прямо использовать теплоту Солнца взамен теплоты горения. У нас на Земле это неудобно и невыгодно по многим причинам: нагреваемые солнцем тела охлаждает воздух и ветер. Солнце светит только днем, причем оно часто закрыто облаками, и теплота его всегда поглощается наполовину атмосферой, сила лучей непостоянна от их изменяющегося наклона, нет хорошего холодильника с низкой температурой; зеркала, собирающие теплоту, тускнеют скоро от воздуха и влажности; они тяжелы, ломки, дороги, не могут быть велики насколько нужно. Все это делает убыточным применение Солнца к устройству тепловых двигателей на Земле.
Совсем другое дело в эфирной пустоте, в среде без тяжести. Тут в одном месте можно получить, даже без зеркал, 200° тепла и рядом, на 1 м расстояния, 270° холода. Так могут применяться с большой утилизацией тепла паровые двигатели, работающие парами воды, эфира, спирта и других жидкостей.
Разумеется, я привожу только пример моторов, но они могут быть совсем иного сорта. Опишем паровые двигатели в простейшем виде. Имеем два одинаковых сосуда, изолированные друг от друга в отношении тепла. Задний находится в тени переднего, обращенного к лучам Солнца. Передняя сторона имеет черную, хорошо поглощающую лучи поверхность. Она и жидкость под ней в сосуде нагреваются Солнцем не выше 200 °C. Пары жидкости, прежде чем перейти в холодильник, т. е. в задний сосуд такого же устройства, как передний, — проходят через обыкновенную паровую машину или турбину. При надлежащем выборе жидкости и устройстве машины, утилизация легко может дойти до 50 %. Такая машина будет давать на каждый м2 черной поверхности, обращенной к Солнцу, более одной лошадиной силы.
Когда почти вся жидкость перейдет из переднего сосуда (паровика) в задний (холодильник), то сосуд переворачивают холодильником к Солнцу, а паровиком — к темному небесному пространству. Одним словом, роли совершенно одинаковых главных частей прибора меняются (автоматически) примерно каждый час, смотря по объему котлов. Последние, конечно, составлены из трубок, как ковры из нитей. Утериваться жидкости не могут, так как все плотно прикрыто от утечки пара.
Мы не можем теперь сказать, какого рода двигатели будут в употреблении. Вероятно, очень многих сортов и систем, чего теперь предвидеть невозможно.
Котлы могут иметь поверхность любой величины, так как тяжесть этому не препятствует. Значит и сила их может быть любая…
Сущность заводской промышленности состоит в следующем.
А. Из минералов добывают их составные элементарные части, например газы, жидкости, металлоиды и металлы.
Б. Из элементов составляют необходимые или полезные нам соединения, например газы, духи, краски, лекарства, питательные вещества, кислоты, щелочи, соли, удобрения, сплавы и проч. (и элементы, и нужные соединения иногда находят готовыми в природе).
В. Сплавам или другим строительным и вообще твердым веществам придают необходимую форму, например, орудий, машин, утвари, научных приборов, бумаги, тканей, одежд, скафандров, жилищ, заводов и т. д.
Для всего этого (А, Б, В) на Земле служат следующие средства: повышение или понижение температуры и давления, электричество, катализаторы (незначительная примесь разных веществ, способствующих химическому процессу), механические силы.
Без орудий, конечно, дело не обходится. Их готовые образцы уже имеются на Земле и ими же воспользуются вне атмосферы…
Сначала у людей не было орудий, как у животных, потом были очень простые. С помощью этих примитивных, были построены получше. Из лучших — еще лучшие и т. д., пока не добрались до теперешних, возбуждающих в нас глубокое изумление и восторг. Прогресс их никогда не закончится, а в эфире он уклонится в сторону, сообразно новым условиям…
Известно, как на Земле получается повышение температуры. Но нам здесь, в эфире, эти средства не нужны, кроме исключительных случаев. Тут повышение всегда можно получить силою солнечных лучей, — очень экономно и любой степени, — от 273° холода до температуры Солнца.
Для получения низшей температуры защищаются от светила блестящими экранами и пользуются лучеиспусканием черных тел в небесное пространство. При этом получают температуру в 273° холода.
Наиболее экономное нагревание, примерно, таково. Камера желаемой величины и формы закрыта со всех сторон, в несколько слоев, хорошо отражающими лучи поверхностями. Так сохраняется теплота внутри камеры, отражается обратно внутрь ее, и температура почти не понижается, как бы ранее высока ни была. Это есть подобие термоса, но только гораздо более совершенного, чему способствует несколько оболочек и отсутствие кругом материальной среды, например воздуха.
Теплота Солнца проникает в камеру через небольшое отверстие. Параболическое зеркало сзади камеры (размерами больше камеры) собирает лучи Солнца в небольшую фокусную группу, как раз величиною в отверстие помещения. Здесь лучи расходятся и нагревают пространство внутри камеры до температуры Солнца, как бы ни было мало зеркало. Но это при идеальных условиях: при полном сохранении тепла, при точкообразном отверстии и при совершенстве отражающих зеркал. На деле ничего этого нет, и потому нагревание только тогда близко к температуре Солнца, когда размер зеркала во много раз больше размера камеры. Потом, некоторое неизбежное нагревание ее стенок ухудшает отражающую их способность и также мешает получению температуры Солнца, т. е. 5-10 тысяч градусов тепла.
В фокусе параболического зеркала получается изображение Солнца. Чем оно меньше, тем меньше отверстие камеры, тем меньше будет потеря тепла и тем выше температура камеры. Но, с другой стороны, приход тепла пропорционален поверхности зеркала. Положим, что радиус зеркала 1 м. Изображение Солнца будет в главном фокусе, на расстоянии полметра от зеркала. Угол солнечного изображения на расстоянии полметра составит около полградуса (таков угловой размер Солнца с Земли). Истинный размер солнечного изображения будет в (мм) равен синусу полградуса, умноженному на 500 мм. Получим около 4,3 мм. Если радиус кривизны сферического зеркала будет не один метр, а Р метров, то изображение Солнца будет в Р раз больше. Например, для зеркала с радиусом в 100 м диаметр изображения будет около 430 мм. Итак, чем больше радиус зеркала, тем больше его изображение, тем больше отверстие в камере и тем больше — как расход тепла, так и его приход. Мы предполагаем все зеркала подобными, т. е. составляющими одну и ту же часть полной шаровой поверхности. При этих условиях выходит, что температура камеры не будет зависеть от размеров зеркала. Но это не совсем так: большое зеркало даст в камере высшую температуру, потому что теряет не только отверстие в камере, но и всю ее поверхность. Потом, имеем еще выгоду больших зеркал: скорость нагревания тел, помещенных в камере, увеличивается с размерами зеркала. Кроме того, они дают больше тепла в единицу времени, и если это тепло поглощается химическими процессами внутри камеры, то и процессы совершаются быстрее.
(adsbygoogle = window.adsbygoogle || []).push({});