- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд
Шрифт:
Интервал:
Закладка:
Далее в "Истории неевклидовой геометрии" я рассматривал работы по сферической тригонометрии Леонарда Эйлера (1707-1783) и математиков его школы.
Поверхности второго порядка
Выше мы упоминали, что Архимед сжигал римские корабли используя свойства параболоида вращения. Он определил параболоиды и эллипсоиды вращения и полости двуполостных гиперболоидов вращения в трактате "О сфероидах и коноидах", где называл эллипсоиды вращения сфероидами, параболоиды вращения - прямоугольными коноидами, а полости гиперболоидов вращения - тупоугольными коноидами. Однополостные гиперболоиды вращения впервые рассматривал Дж. Валлис (1616 -1703), который называл их цилиндроидами.
В статье о геометрических работах Эйлера я изучал вопрос об открытии Эйлером поверхностей второго порядка общего вида. Эйлер рассматривал поверхности второго порядка, получаемые сжатием из поверхностей вращения, и гиперболический параболоид, который нельзя получить таким образом. Эти поверхности были впервые описаны Эйлером во 2-м томе "Введения в анализ бесконечных".
Современные названия этих поверхностей были предложены Гаспаром Монжем (1746-1818).
Теория параллельных линий в Европе и неевклидова геометрия
В "Истории неевклидовой геометрии" я подробно рассматривал попытки доказательств V постулата Евклида европейскими математиками, из которых отмечу доказательства математиков XIV в. Леви бен Гершона из Монпелье и Альфонсо из Вальядолида, написанные на иврите под несомненным влиянием арабских трактатов Ибн ал-Хайсама, и доказательство Джона Валлиса на основе явно сформулированного им постулата о том, что для всякой фигуры можно построить подобную фигуру любых размеров.
В той же книге я изложил историю открытия гиперболической геометрии Карлом Фридрихпм Гауссом (1777 -1855), Николаем Ивановичем Лобачевским (1792 -1856) и Яношем Бойяи (1802-1869), историю интерпретаций этой геометрии Эудженио Бельтрами (1835-1900), Феликсом Клейном (1849-1925) и Анри Пуанкаре (1854 - 1912) и историю развития эллиптической геометрии в работах Бернгарда Римана (1826-1866), Вильяма Кингдона Клиффорда (1845-1879) и Ф.Клейна, а также историю обобщений этих геометрий.
Лобачевский обнаружил связь между тригонометрией в открытом им пространстве и сферической тригонометрией. Он придавал этой связи очень важное значение, так как видел в ней доказательство непротиворечивости открытой им геометрии. Я специально исследовал этот вопрос и установил, что причина связи состоит в том, что гиперболическая геометрия имеет место на сфере мнимого радиуса в псевдоевклидовом пространстве.
Геометрические преобразования в Европе
В "Истории неевклидовой геометрии" я подробно рассматривал историю геометрических преобразований в Европе - развитие проективной геометрии в трудах Жирара Дезарга (1591 -1661), Блеза Паскаля (1623 - 1662), Исаака Ньютона (1643 -1727), Жана Виктора Понселе(1788 -1867),
Августа Фердинанта Мебиуса (1790 -1868), развитие аффинной геометрии в трудах Алексиса Клода Клеро (1713-1765), Л.Эйлера и А.Ф.Мебиуса, развитие конформной геометрии в трудах Л.Эйлера, Жана Лерона Даламбера(1717 -1783), Мебиуса, Жозефа Лиувилля (1809 - 1882).
Я рассмотрел также "Эрлангенскую программу" Ф.Клейна, согласно которой всякая геометрия определяется своей группой преобразований, и "Теорию групп преобразований" Софуса Ли (1842 - 1899), в которой было основано учение о группах Ли.
В научной биографии Эли Картана (1869 - 1951) я подробно изучал развитие теории групп Ли и связанных с ней теории симметрических Римановых пространств и пространств аффинной связности, а также других обобщенных пространств.
Геометрическая алгебра в Европе и многомерная геометрия
В "Истории неевклидовой геометрии" я рассмотрел различные виды геометрической алгебры европейских математиков. Это, прежде всего, исчисление треугольников в "Первых замечаниях к видовой логистике" Ф.Виета, oказавшее сильнoe влияние на возникновение аналитической геометрии Пьера Ферма (1601-1665).
К геометрической алгебре относится исчисление отрезков Рене Декарта (1596-1650), связанное с его аналитической геометрией.
Дальнейшим развитием принципов геометрической алгебры была идея Готфрида Вильгельма Лейбница (1646-1716) о "геометрии положения", оказавшая исключительное влияние на появление и развитие топологии в работах Эйлера, Римана и Пуанкаре, на развитие проективной геометрии в работах Лазара Карно (1753-1823) и Христиана фон Штаудта (1798-1867) на возникновение векторной алгебры и многомерной геометрии в "Учении о протяжении" Германа Грассмана (1809-1877).
Другими направлениями развития геометрической алгебры были теория Симона Стевина (1548-1620) сложения сил в механике и алгебра векторов и кватернионов у Вильяма Роуана Гамильтона (1805-1865).
В той же книге я проследил возникновение и развитие многомерной геометрии. В неявном виде эта геометрия появилась еще в работах Михаэля Васильевича Остроградского (1801-1862) и Карла Густава Якоба Якоби (1804-1851) о кратных интегралах. Таким образом, Остроградский, который не понял открытия Лобачевского и написал отрицательный отзыв на его первую публикацию, сам оказался причастным к расширению понятия о пространстве. Я рассмотрел работы Грассмана, Людвига Шлефли (1814-1895) и Германа Вейля (1885-1955) по многомерной евклидовой геометрии, работу Римана, в которой была основана многомерная геометрия искривленного пространства, его заметку о многомерной топологии, идеи которой развили его друг Энрико Бетти (1823-1892) и Пуанкаре, который основал геометрию многомерных многообразий и комбинаторную топологию. Риман и Пуанкаре называли топологию Analysis situs, слово "топология" - перевод этого термина с латинского на греческий язык.
Я изучал также историю бесконечномерной геометрии, основанную Сальваторе Пинкерле (1853-1936) и Давидом Гильбертом (1862-1943), которые рассматривали в качестве точек и векторов бесконечномерных пространств функции. Замечу, что русский математик Владимир Андреевич Стеклов, который бурно протестовал против многомерной геометрии Римана, в своих работах об "ортогональных функциях" фактически пользовался бесконечномерным пространством Гильберта. Геометрия гильбертова пространства широко применяется в квантовой механике.
Группы вращений гиперсфер в гильбертовых пространствах некомпактны, как и сами эти гиперсферы. Я несколько раз упоминал унитарные представления некомпактных простых групп Ли, опреденные Израилем Моисеевича Гельфандом (р. 1913) и его сотрудниками и Хариш - Чандрой (1923-1983). Эти представления являются гомоморфными отображениями некомпактных простых групп Ли в группы вращений гиперсфер комплексных гильбертовых пространств.
Глава 3. СИММЕТРИИ И УСТОЙЧИВОСТЬ Симметрии, двойственность и тройственность
(adsbygoogle = window.adsbygoogle || []).push({});
