- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Звезды: их рождение, жизнь и смерть - Иосиф Шкловский
Шрифт:
Интервал:
Закладка:
Рентгеновские звезды, помимо концентрации к галактическому экватору, обнаруживают явно выраженную концентрацию к галактическому центру: свыше половины их расположено в интервале долгот 60° по обе стороны галактического центра. Отсюда можно сделать вывод, что среднее расстояние до этих источников равно расстоянию от Солнца до галактического центра — около 10 000 пс. Этот вывод следует также из анализа спектров рентгеновских источников, находящихся в области созвездия Стрельца (это созвездие находится в направлении на галактический центр). У таких источников спектр часто обрывается со стороны низких энергий. Такой «обрыв» происходит из-за поглощения рентгеновского излучения межзвездным газом, причем для того, чтобы спектр оборвался у энергии квантов, равной 3 кэВ (как это наблюдается), нужно как раз такое количество межзвездных атомов, какое находится между Солнцем и центром Галактики.
Зная расстояние до таких источников ( 10 000 пс) и величину потоков рентгеновского излучения (которые непосредственно наблюдаются), можно сделать вывод, что мощности рентгеновского излучения у таких объектов доходят до 1038 эрг/с, т. е. в десятки раз превосходят болометрическую светимость Солнца. Этот важный вывод подтверждается наблюдениями рентгеновских источников в ближайших к нам галактиках — Магеллановых Облаках, расстояние до которых хорошо известно (60 000 пс). С другой стороны, из статистического анализа результатов наблюдений следует, что среди рентгеновских источников почти нет объектов, мощность излучения которых была бы 1034—1035 эрг/с. Если бы это было не так, то в Галактике наряду со сравнительно яркими источниками наблюдалось бы значительно большее количество слабых. Таким образом, рентгеновские звезды образуют в Галактике довольно ограниченную по мощности (1039—1038 эрг/с) и по численности ( 100 объектов) популяцию. Это означает, что большая часть всех существующих в Галактике рентгеновских звезд уже наблюдается. Подтверждением вывода о малочисленности рентгеновских звезд являются результаты наблюдения рентгеновского излучения от туманности Андромеды, которая регистрируется как довольно слабый источник. Как известно, эта туманность представляет собой гигантскую спиральную звездную систему, во многих отношениях сходную с нашей Галактикой. Учитывая, что туманность Андромеды удалена от нас на расстояние около 600 000 пс, можно найти по измеренной величине потока суммарную мощность всех находящихся в ней рентгеновских источников, которая оказывается около 2 1039 эрг/с. Так как средняя мощность рентгеновского излучения источников около 1037 эрг/с, то мы непосредственно получаем, что в туманности Андромеды имеется примерно сотня таких рентгеновских звезд (см. ниже).
Таким образом, можно сделать вывод, что рентгеновские звезды—чрезвычайно редкий феномен. В нашей Галактике, так же как и в туманности Андромеды, на миллиард «обычных» оптических звезд приходится только одна рентгеновская. Пожалуй, трудно назвать какую-либо другую популяцию в разнообразном «населении» Галактики, которая была бы так же редка. Разве только шаровые скопления по своей малочисленности могут сравниться с рентгеновскими звездами. Но шаровые скопления — это огромные агрегаты вещества, состоящие из сотен тысяч очень старых звезд, между тем как рентгеновские звезды — очень компактные объекты, несомненно, связанные с заключительным этапом эволюции звезд.
Выдающиеся по своей значимости результаты по исследованию рентгеновских источников в ближайших к нам галактиках были получены на уже упоминавшейся ранее обсерватории «Эйнштейн». Чувствительность установленных там рентгеновских телескопов превосходила чувствительность детекторов «Ухуру» примерно в 1000 раз! Это дало возможность обнаружить в туманности Андромеды около сотни рентгеновских источников (рис. 23.2). В Большом и Малом Магеллановых Облаках также было обнаружено значительное количество рентгеновских источников. В Большом Магеллановом Облаке, богатом молодыми массивными звездами, найдено всего около 200 источников, а в Малом — свыше 20. Скорее всего, основная часть источников в Большом Магеллановом Облаке связана с молодыми, массивными звездами (см. ниже). Это означает, что в Магеллановых Облаках наблюдаются, в основном, источники I типа (см. стр. 696). Между тем у гигантской галактики М 31 в Андромеде, масса которой раза в 2 больше массы нашей Галактики, скорость образования молодых звезд из газово-пылевой среды невелика, что объясняет сравнительно небольшое количество обнаруженных там источников I типа.
Рентгеновские источники обнаружены и у галактик, более удаленных, чем туманность Андромеды. Например, 10 источников обнаружено в М 83 и 9 — в карликовой галактике М 33, находящейся в созвездии Треугольника. У более удаленных галактик пока нельзя наблюдать отдельные рентгеновские источники. Наблюдениям доступно только суммарное излучение всех источников, находящихся в данной галактике. На обсерватории «Эйнштейн» такое излучение удалось обнаружить от 35 из 43 исследованных галактик.
Рис. 23.2: Вверху: рентгеновские источники в туманности Андромеды (М 31). Внизу: рентгеновские источники в центральной части М 31 (фотография получена на обсерватории «Эйнштейн»).Важной особенностью излучения рентгеновских звезд является их переменность. Как правило, потоки рентгеновского излучения меняются. Эти вариации потоков носят довольно разнообразный характер. У отдельных источников наблюдаются очень быстрые изменения потоков, носящие неправильный характер. Например, у одного из наиболее ярких источников Лебедь Х-1 существенные изменения потока происходят за время меньше 0,001 с! Уже один этот факт говорит о том, что линейные размеры таких источников должны быть меньше 0,001 световой секунды, т. е. < 300 км (1/20 земного радиуса). По-видимому, в действительности они значительно меньше. Хорошо изучены вариации потока у самого яркого источника Скорпион Х-1. У этого источника таких быстрых изменений потока, как у источника Лебедь Х-1, не наблюдается. Он может излучать на более или менее постоянном уровне в течение нескольких дней. За это время как оптический, так и рентгеновский поток от него меняется в пределах 20%, причем вариации оптического и рентгеновского излучения не связаны. На это «спокойное» излучение накладываются отдельные «вспышки», длящиеся по нескольку часов. Вспышки охватывают как оптический, так и рентгеновский диапазон. Во время вспышек потоки меняются в 2—3 раза, причем среднее значение потоков в этой «активной» фазе раза в два больше, чем в спокойной. Никакой периодичности вспышек не обнаружено. Одновременные оптические и рентгеновские наблюдения показали, что во время вспышек рентгеновское излучение источника Скорпион Х-1 становится более «жестким» (т. е. в его спектре доля энергичных квантов растет), а оптическое излучение становится более «голубым». Если исходить из развитой выше модели этого источника как компактного плазменного облака, то следует предположить, что во время вспышек температура плазмы и ее средняя плотность растут. Последнее обстоятельство приводит к тому, что для оптического излучения плазма становится непрозрачной для более коротких волн, отчего спектр становится более «голубым» (закон Рэлея—Джинса!).
Рис. 23.3: Кривая блеска рентгеновского излучения источника Центавр Х-3.Пожалуй, самым выдающимся открытием, сделанным на «Ухуру», является обнаружение строгой периодичности вариации потока рентгеновского излучения от некоторых источников. Это открытие, как мы увидим дальше, дало ключ к пониманию природы рентгеновских звезд и для их «осмысленного» количественного исследования. До «Ухуру» исследования этих объектов носили характер бессистемного сбора наблюдательных данных. Суть открытия сводится к следующему.
Исследования вариаций потока от источника умеренной интенсивности Центавр Х-3 показали, что существуют два уровня излучения этого источника: «высокий» и «низкий». Когда уровень излучения «низкий», поток уменьшается раз в 10. Оба уровня излучения чередуются с удивительно точной периодичностью, равной 2,08707 дня. В течение этого периода источник наблюдается на «низком» уровне излучения около 0,5 суток (рис. 23.3). Объяснение такой строгой периодичности не представляет труда для астрономов. Рентгеновский источник Центавр Х-3 входит в состав двойной системы, причем плоскость орбиты наклонена под небольшим углом к лучу зрения. При движении рентгеновской компоненты этой двойной системы по своей орбите она будет периодически заходить за «нормальную» (т. е. «оптическую») компоненту, которая тем самым будет ее экранировать. По этой причине поток рентгеновского излучения на Земле резко уменьшится. Когда «затмение» рентгеновской звезды оптической закончится, первоначальный («высокий») уровень потока рентгеновского излучения восстановится. Аналогичное явление давно известно в оптической астрономии: речь идет о затменных переменных звездах, типичным представителем которых является знаменитая звезда Алголь.

