Статьи - Никола Тесла
Шрифт:
Интервал:
Закладка:
Большинство людей, и среди них немало электротехников, могут подумать, что очень длинные и шумные искровые разряды свидетельствуют о большой энергии, но это далеко не так. Впечатляющее представление такого рода, напряжением в несколько миллионов вольт, можно без труда продемонстрировать в сухую погоду, имея какую-либо широкую кожаную или тканевую конвейерную ленту. Единственное требование состоит в том, чтобы наружные поверхности емкостных элементов с высоким зарядом имели идеальную форму с малой кривизной. Но электрическая энергия на выходе ничтожна, и это относится ко всем предлагаемым электростатическим генераторам независимо от габаритов.
Не нужно быть экспертом, чтобы понять, что устройство такого рода не является источником электричества, подобно динамо-машине, а только приемником, или конденсатором, со свойствами накопителя. Вся его энергия получена от электричества, которое генерируется благодаря трению или обеспечивается с помощью острия и нагнетания в терминалы посредством конвейерной ленты. Если бы мачты были высотой с «Эмпайр-стейт-билдинг», а диаметр сфер составлял 500 футов, то исполинское сооружение не могло бы иметь больше энергии, чем ему передается с помощью наэлектризованной ленточной передачи, и сколько ни улучшай, этот тип неизбежно обречен на небольшую выходную мощность и низкий КПД ввиду имеющихся ограничений и неэкономичности процесса перемещения зарядов от источников к терминалам.
Ил. 2. Вид снизу изоляционной колонны генератора Ван де Граафа с непрерывной бумажной лентой
Поскольку авторы статей о колоссе ограничиваются тем, что превозносят его размеры, вольтаж и возможности, но не дают ни малейшего намека относительно его режима работы и энергетических характеристик, я попытаюсь восполнить недостаток информации. С этой целью допустим, что сферы размещены на расстоянии 55 футов между их центрами и разность их потенциалов составляет 10 000 000 вольт. Обычно электрическая емкость такой сферы равна радиусу, в данном случае 225 сантиметров, но, как разъяснялось выше, к этому следует добавить 16 процентов, и тогда она составит 261 сантиметр, что эквивалентно увеличению емкости до 0,00029 микрофарады. Следовательно, когда режим работы стабилизируется и каждая сфера будет иметь потенциал 5 000 000 вольт, количество электричества, аккумулированного в каждой сфере, составит 0,00145 кулона. Если бы это количество поступало ежесекундно, сила тока достигла бы 0,00145 ампера. Лампа накаливания в 25 ватт требует ток в 150 раз большей силы.
При расчете количества электричества, поступающего на каждый терминал в секунду, заслуживает внимания только распылитель [устройство для получения и передачи зарядов], поскольку он обеспечивает гораздо большую генерацию, чем можно было бы получить, используя силу трения конвейерных лент. Четкого описания применяемого устройства не приводится, но в рамках этого трактата достаточно знать, что он работает при напряжении 20 000 вольт и посредством множества острий питает энергией обе конвейерные ленты, о которых известно, что их ширина равна четырем футам, или 120 сантиметрам. Допустим, что они движутся со скоростью 100 футов, или 3 000 сантиметров в секунду, тогда площадь, охватываемая за этот промежуток времени, составит 120×3 000 = 360000 квадратных сантиметров. Если бы было возможно заряжать ленты равномерно, достигая на поверхности интенсивности, примерно равной той, что несет на себе наэлектризованная частица, то выходная мощность установки была бы весьма большой. Но осуществить это невозможно. Нижеследующие ориентировочные расчеты покажут, на что, более или менее, можно рассчитывать.
Искровые разряды, исходящие с острий, изучены всесторонне, и, в результате имеющихся данных и моих собственных наблюдений, я считаю, что сила тока напряжением 20 000 вольт, проходящего через каждое острие, будет равна примерно 0,0001655 ампера. Очень частое расположение острий не даст преимущества по причине их взаимного реагирования, тем не менее я допускаю такое их количество, которое, по-видимому, будет реальным, скажем 200, и в таком случае весь ток в целом будет равен 200 × 0,0001655 = 0,0331 ампера.
Итак, электричество передается с острий на ленту с помощью мельчайших физических носителей — молекул воздуха. Когда такая наэлектризованная частица вступает в контакт с большим проводящим телом, она отдает ему почти весь свой заряд, но диэлектрику, такому, как лента, она может передать лишь очень малую долю по причине интенсивного отталкивания между зарядом отданным и тем, что остается на частице. Из аналитических расчетов следует, что практически воспринятая часть не будет, по всей вероятности, превышать 1/150 всего заряда на любой частице, выбрасываемой на ленту. Ток от острия достигает 0,0331 ампера, иными словами, он переносит совокупный заряд, количественно равный 0,0331 кулона в секунду, и от этого количества лента заберет только 0,00022 кулона, что эквивалентно току силой 0,00022 ампера. Это означает, что 99,33 процента энергии, обеспечиваемой острием, теряется, и это наглядно демонстрирует потрясающую неэффективность этого способа электризации.
Как будет показано, [распыляющее] устройство подает на каждую ленту энергию ничтожно малой мощности, равную 4,4 ватта, и, следовательно, не оказывает, фактически, никакого влияния на выходную мощность энергоустановки, за исключением того, что оно ограничивает ее возможности. Об этом важно помнить, принимая во внимание общее представление, созданное первыми известиями о том, что вся энергия сообщается распылителем. Поскольку количество электричества, накопившегося на сферах, остается неизменным, очевидно, что сбросовый ток между ними в нормальном рабочем режиме должен составлять 0,00022 ампера, так что при разности потенциалов в 10 000 000 энергоустановка должна развивать мощность 2 200 ватт.
Ил. 3. Вид генератора высокого напряжения в ином ракурсе. Предусмотрен рельсовый путь, с тем чтобы установку можно было выкатывать наружу
Поскольку заряд от задающего контура ничтожно мал, встает вопрос: откуда берется эта огромная энергия с ее мощностью? Как она производится? Ответ прост. Ее источником являются ленты, совершающие работу по перемещению зарядов, сообщаемых им вопреки отталкиванию, производимому сферами. Величину этой силы можно приблизительно вычислить. Постоянный заряд на сфере составляет, как было сказано выше, 0,00145 кулона, или 4 350 000 электростатических единиц. Но 16 процентов этого количества «связаны», и их не следует принимать во внимание. С учетом места установки можно полагать, что емкость свободной поверхности каждого терминала может составить, по расчетам, 222 сантиметра, так что при пяти миллионах вольт Q = 222 × 5 000 000/300 = 3 700 000 электростатических единиц. Перемещающийся заряд распространится по всей движущейся вверх ленте, длина которой равна высоте изоляционной колонны, и с учетом припусков длину 24 фута можно считать приемлемой. Если скорость движения ленты предположительно равна 6 000 футов в минуту, это расстояние будет пройдено за 0,24 секунды и, следовательно, заряд ленты, согласно расчетам, составит 0,24 от суммарного, перемещаемого за одну секунду, то есть 0,000528 кулона, или 158 400 электростатических единиц. Верхняя граница заряженного пространства находится на расстоянии 7 ½ фута, а нижняя — 31 ½ фута от центра сферы. Таким образом, у первой [границы] r = 225 см, а у второй d = 945 см. Если заряженная площадь ленты составляет 120 × 720 = 86 400 квадратных см, то отсюда следует, что плотность заряда равна 158 400/86 400 = 1,8333 электростатической единицы. Соответственно, если распределение заряда идеально однородно, поперечная полоса ленты длиной 1 сантиметр будет удерживать количество q = 120 × 1,8333 = 220 электростатических единиц.
Итак, обозначим поверхностный элемент, длина которого стремится к нулю, через dx, величина переносимого им заряда будет равна qdx = 220 dx электростатических единиц, а заряд на сфере Q = 3 700 000 электростатических единиц, отталкивающая сила, действующая на поверхностный элемент на расстоянии от центра сферы, будет равна Qq/x²dx. Интегрируя это выражение в пределах границ r и d и подставляя значения для Q и q, найдем силу, отталкивающую заряженную сторону ленты, по формуле
или 2,81093 килограмма. При скорости 100 футов, или 30 метров в секунду, работа равна 84,3279 кг·м/с, что эквивалентно 0,82691 киловатта. Следовательно, обе ленты будут совершать работу, требующую 1,65382 киловатта. Это на 33 процента меньше, чем гипотетическая электрическая работа установки, а поскольку энергия, переносимая лентами, должна быть по крайней мере равна электрической энергии, то кто-то с легкостью приходит к заключению, что съемные острия не забирают весь заряд полностью, как принято считать, и ток, вместо того чтобы иметь силу 0,00022 ампера, будет, соответственно, слабее, то есть сила тока составит 0,0001654 ампера. Но эта точка зрения несостоятельна, так как пределы рабочих параметров определяются физическими законами, а не дефектами устройства, которые к тому же можно с легкостью устранить. Несоответствие расчетной мощности лент и электрической активности установки тем более озадачивало, что обе эти величины не могут быть приведены в соответствие с помощью умозрительного эксплуатационного режима. Тем не менее я в конечном итоге согласился с тем, что заряд не может распределяться на ленте равномерно, но должен усиливаться по мере прохождения снизу вверх. Действительно, на такой эффект можно рассчитывать, несмотря на то что поверхностный заряд на изоляционном веществе малоподвижен.