100 знаменитых изобретений - Владислав Пристинский
Шрифт:
Интервал:
Закладка:
В качестве индикатора локационных импульсов на выходе РЛС используется электронно-лучевая трубка. В современных РЛС трубка дополняется специализированной ЭВМ, которая значительно расширяет круг задач, оперативно решаемых с помощью РЛС, и повышает точность определения координат объекта.
Огромную роль сыграли радиолокаторы во время «битвы за Англию» в 1940 г. Сеть английских радиолокационных станций, расположенных по всему побережью Ла-Манша, засекала немецкие самолеты, бомбившие объекты на территории страны в основном ночью, наводила на них истребители. Немцы, стремясь воспрепятствовать бомбардировкам своих городов, также создали локаторы. Для борьбы с ними союзники применяли ложные цели, сбрасывая с самолетов миллионы кусочков алюминиевой фольги.
Во время Второй мировой войны локаторы устанавливали на самолетах, выполнявших «слепое бомбометание», а также боровшихся с подводными лодками противника.
Вследствие непригодности обычных радиоламп с электростатическим управлением для генерации и приема сантиметровых и миллиметровых волн появилась необходимость создания принципиально новых электронных приборов. К началу 40-х годов XX в. для генерирования больших мощностей был создан новый тип генератора сверхвысокочастотных колебаний сантиметрового диапазона, рассчитанный на импульсный режим работы – магнетрон, а также менее мощный генератор – клистрон.
После 1945 г. для усиления сантиметровых волн начинают все больше применяться так называемые электронно-волновые приборы – лампы с бегущей волной.
Радиолокация стимулировала развитие импульсной техники, освоение очень коротких радиоволн и специальных антенных устройств остронаправленного действия.
Сначала в радиолокации использовались метровые и дециметровые волны, а затем стали переходить к сантиметровым волнам, которым соответствует спектр частот от 30 тыс. до 3 тыс. мегагерц. Малая длина этих волн, являющихся частью диапазона ультракоротких волн, позволила создать сравнительно небольшие по размерам радиолокационные антенны, имевшие ширину направленности в несколько градусов и даже долей градуса. Это позволило обеспечить большую помехоустойчивость станции. Для этого используются специальные антенны с параболическим рефлектором, а также рупорные, щелевые, линзовые антенны.
После Второй мировой войны развитию радиолокации уделялось большое внимание. Это связано с появлением ядерного оружия, для доставки которого к цели применяются как самолеты, так и ракеты. Для защиты от атомного удара в СССР, США, Великобритания и других странах разворачивается мощная противовоздушная оборона. Ее важнейшей составной частью стали РЛС. Они обнаруживают цель и наводят на нее авиацию ПВО и зенитно-ракетные комплексы.
Специальные типы радиолокационных станций стали применяться для перехвата самолетов противника, для управления огнем артиллерийских установок и т. д. Появляются радиолокаторы, предупреждающие экипаж самолета о приближении вражеских самолетов сзади или снизу (в так называемом «мертвом секторе»).
Радиолокационные станции обнаружения для быстрого и точного опознавания кораблей или самолетов снабжались устройствами, работающими по принципу «запросчика» и «ответчика» (такой метод предполагает посылку «запросного» радиосигнала в направлении объекта и приема «ответного» сигнала, автоматически излучаемого передатчиком объекта). Вместе с тем начинает развиваться и «противорадиолокация» для обнаружения радиолокационных станций противника, для создания помех в их работе.
Во время войны во Вьетнаме для борьбы с РЛС противника американские войска стали применять противолокаторную ракету «Шрайк», которая наводилась по лучу локатора и уничтожала станцию.
В конце XX в. в США осуществляется программа «Стеле», в ходе которой создаются самолеты, невидимые для локаторов. Эти самолеты имеют специальную форму поверхности, рассчитанную на компьютере. Луч локатора, падающий на нее, рассеивается, и самолет становится невидимым для ПВО противника. Однако такая конструкция отрицательно сказывается на аэродинамике машины. Как показал опыт войн на Ближнем Востоке и в Югославии, объект, невидимый для современных РЛС, работающих в диапазоне миллиметровых волн, легко обнаруживается более старыми локаторами, работающими в диапазоне метровых волн.
В России разрабатывается самолет нового поколения, на котором установлена противолокационная защита, не влияющая на летные характеристики машины. Принципы, на которых основана ее работа, пока не разглашаются.
В военных целях созданы так называемые загоризонтные РЛС. Они применяются для наблюдения с расстояния в несколько тысяч километров с целью раннего обнаружения пусков баллистических ракет и определения их возможных траекторий, обнаружения ядерных взрывов, наблюдения за различными слоями атмосферы.
Радиолокация с большим успехом используется в гражданской авиации. Она применяется для осуществления слепых полетов, слепой посадки на аэродром, для измерения расстояний до наземных ориентиров, управления движением самолета в районе аэропорта. Бортовые самолетные РЛС используются также для определения истинной (путевой) скорости полета, выявления грозовых фронтов и для получения на экране радиолокационного изображения земной поверхности при отсутствии ее видимости. Радиолокационные высотомеры, устанавливаемые на самолете, позволяют с большой точностью определить истинную высоту полета. В условиях арктических полетов специальные бортовые РЛС позволяют определять толщину льда, что необходимо для установления возможности посадки самолета на льдину.
В морском и речном флоте радиолокация применяется для увеличения безопасности кораблевождения.
Радиолокация широко используется в метеорологии. Объектами радиолокационного обнаружения могут быть облака, осадки, грозовые очаги и фронты.
Методы радиолокации оказались чрезвычайно плодотворными для развития радиоастрономии. Ее интенсивное развитие началось после Второй мировой войны, хотя еще в довоенное время удалось зарегистрировать отражения радиоволн от Луны и обнаружить радиоизлучение Солнца.
Уже в 1945–1946 гг. в США и Венгрии были проведены опыты радиолокации Луны. С помощью мощного передатчика на Луну был направлен сигнал радиолокатора, а приблизительно через 3 сек отраженный сигнал вернулся на Землю. Расстояние до Луны, измеренное методом «радиоэхо», согласуется с данными других способов измерений.
Радиолокация планет позволила существенно уточнить их параметры (например расстояние от Земли и скорость вращения), состояние атмосферы и т. д. Такие исследования проводились в Советском Союзе под руководством академика В. А. Котельникова. В начале 60-х годов XX в. была произведена, в частности, радиолокация Венеры, Меркурия, Марса и Юпитера.
С началом космической эры радиолокация применяется для слежения за искусственными спутниками Земли и измерения их траектории.
Реактивный двигатель
В реактивном двигателе сила тяги, необходимая для движения, создается путем преобразования исходной энергии в кинетическую энергию рабочего тела. В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде отдачи (струи). Отдача перемещает в пространстве двигатель и конструктивно связанный с ним аппарат. Перемещение происходит в направлении, противоположном истечению струи. В кинетическую энергию реактивной струи могут преобразовываться различные виды энергии: химическая, ядерная, электрическая, солнечная. Реактивный двигатель обеспечивает собственное движение без участия промежуточных механизмов.
Для создания реактивной тяги необходимы источник исходной энергии, которая преобразуется в кинетическую энергию реактивной струи, рабочее тело, выбрасываемое из двигателя в виде реактивной струи, и сам реактивный двигатель, преобразующий первый вид энергии во второй.
Основной частью реактивного двигателя является камера сгорания, в которой создается рабочее тело.
Все реактивные двигатели делятся на два основных класса, в зависимости от того, используется в их работе окружающая среда или нет.
Первый класс – воздушно-реактивные двигатели (ВРД). Все они тепловые, в которых рабочее тело образуется при реакции окисления горючего вещества кислородом окружающего воздуха. Основную массу рабочего тела составляет атмосферный воздух.
В ракетном двигателе все компоненты рабочего тела находятся на борту оснащенного им аппарата.
Существуют также комбинированные двигатели, сочетающие в себе оба вышеназванные типа.
Впервые реактивное движение было использовано в шаре Герона – прототипе паровой турбины. Реактивные двигатели на твердом топливе появились в Китае в X в. н. э. Такие ракеты применялись на Востоке, а затем в Европе для фейерверков, сигнализации, а затем как боевые.