Категории
Самые читаемые

C++ - Страустрап Бьярн

Читать онлайн C++ - Страустрап Бьярн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 70
Перейти на страницу:

class ostream (* //... ostream(streambuf*); ostream(int size, char* s); *);

Здесь задано два конструктора. Один получает вышеупомянутый streambuf для реального вывода, другой получает размер и указатель на символ для форматирования строки. В описании необходимый для конструктора список параметров присоединяется к имени. Теперь вы можете, например, описать такие потоки:

ostream my_out( amp;some_stream_buffer); char xx[256]; ostream xx_stream(256,xx);

Описание my_out не только задает соответствующий объем памяти где-то в другом месте, оно также вызывает конструктор ostream::ostream(streambuf*), чтобы инициализировать его параметром amp;some_stream_buffer, предположительно указателем на подходящий объект класса streambuf. Описание конструкторов для класса не только дает способ инициализации объектов, но также обеспечивает то, что все объекты этого класса будут проинициализированы. Если для класса были описаны конструкторы, то невозможно описать переменную этого класса так, чтобы конструктор не был вызван. Если класс имеет конструктор, не получающий параметров, то этот конструктор будет вызываться в том случае, если в описании нет ни одного параметра.

1.11 Вектора

Встроенное в С++ понятие вектора было разработано так, чтобы обеспечить максимальную эффективность выполнения при минимальном расходе памяти. Оно также (особенно когда используется совместно с указателями) является весьма универсальным инструментом для построения средств более высокого уровня. Вы могли бы, конечно, возразить, что размер вектора должен задаваться как константа, что нет проверки выхода за границы вектора и т.д. Ответ на подобные возражения таков: «Вы можете запрограммировать это сами.» Давайте посмотрим, действительно ли оправдан такой ответ. Другими словами, проверим средства абстракции языка С++, попытавшись реализовать эти возможности для векторных типов, которые мы создадим сами, и посмотрим, какие с этим связаны трудности, каких это требует затрат, и насколько получившиеся векторные типы удобны в обращении. class vector (* int* v; int sz; public: vector(int); // конструктор ~vector(); // деструктор int size() (* return sz; *) void set_size(int); int amp; operator[](int); int amp; elem(int i) (* return v[i]; *) *); Функция size возвращает число элементов вектора, таким образом индексы должны лежать в диапазоне 0 ... size()-1. Функция set_size сделана для изменения этого размера, elem обеспечивает доступ к элементам без проверки индекса, а operator[] дает доступ с проверкой границ.

Идея состоит в том, чтобы класс сам был структурой фиксированного размера, управляющей доступом к фактической памяти вектора, которая выделяется конструктором вектора с помощью распределителя свободной памяти new:

vector::vector(int s) (* if (s«=0) error(„bad vector size“); // плохой размер вектора sz = s; v = new int[s]; *)

Теперь вы можете описывать вектора типа vector почти столь же элегантно, как и вектора, встроенные в сам язык:

vector v1(100); vector v2(nelem*2-4);

Операцию доступа можно определить как

int amp; vector::operator[](int i) (* if(i«0 !! sz„=i) error(«vector index out of range“); // индекс выходит за границы вектора return v[i]; *)

Операция !! (ИЛИИЛИ) – это логическая операция ИЛИ. Ее правый операнд вычисляется только тогда, когда это необходимо, то есть если вычисление левого операнда дало ноль. Возращение ссылки обеспечивает то, что запись [] может использоваться с любой стороны операции присваивания:

v1[x] = v2[y];

Функция со странным именем ~vector – это деструктор, то есть функция, описанная для того, чтобы она неявно вызывалась, когда объект класса выходит из области видимости. Деструктор класса C имеет имя ~C. Если его определить как

vector::~vector() (* delete v; *)

то он будет, с помощью операции delete, освобождать пространство, выделенное конструктором, поэтому когда vector выходит из области видимости, все его пространство возвращается обратно в память для дальнейшего использования.

1.12 Inline-подстановка

Если часто повторяется обращение к очень маленькой функции, то вы можете начать беспокоиться о стоимости вызова функции. Обращение к функции члену не дороже обращения к функции не члену с тем же числом параметров (надо помнить, что функция член всегда имеет хотя бы один параметр), и вызовы в функций в С++ примерно столь же эффективны, сколь и в любом языке. Однако для слишком маленьких функций может встать вопрос о накладных расходах на обращение. В этом случае можно рассмотреть возможность спецификации функции как inline-подставляемой. Если вы поступите таким образом, то компилятор сгенерирует для функции соответствующий код в мете ее вызова. Семантика вызова не изменяется. Если, например, size и elem inline-подставляемые, то

vector s(100); //... i = s.size(); x = elem(i-1);

порождает код, эквивалентный

//... i = 100; x = s.v[i-1];

С++ компилятор обычно достаточно разумен, чтобы генерировать настолько хороший код, насколько вы можете получить в результате прямого макрорасширения. Разумеется, компилятор иногда вынужден использовать временные переменные и другие уловки, чтобы сохранить семантику.

Вы можете указать, что вы хотите, чтобы функция была inline-подставляемой, поставив ключевое слово inline, или, для функции члена, просто включив определение функции в описание класса, как это сделано в предыдущем примере для size() и elem().

При хорошем использовании inline-функции резко повышают скорость выполнения и уменьшают размер объектного кода. Однако, inline функции запутывают описания и могут замедлить компиляцию, поэтому, если они не необходимы, то их желательно избегать. Чтобы inline функция давала существенный выигрыш по сравнению с обычной функцией, она должна быть очень маленькой.

1.13 Производные классы

Теперь давайте определим вектор, для которого пользователь может задавать границы изменения индекса.

class vec: public vector (* int low, high; public: vec(int,int);

int amp; elem(int); int amp; operator[](int); *);

Определение vec как :public vector

означает, в первую очередь, что vec – это vector. То есть, тип vec имеет (наследует) все свойства типа vector дополнительно к тем, что описаны специально для него. Говорят, что vector является базовым классом для vec, а о vec говорится, что он производный класс от vector. Класс vec модифицирует класс vector тем, что в нем задается другой конструктор, который требует от пользователя указывать две границы изменения индекса, а не длину, и имеются свои собственные функции доступа elem(int) и operator[](int). Функция elem() класса vec легко выражается через elem() класса vector: int amp; vec::elem(int i) (* return vector::elem(i-low); *)

Операция разрешения области видимости :: используется для того, чтобы не было бесконечной рекурсии обращения к vec::elem() из нее самой. с помощью унарной операции :: можно ссылаться на нелокальные имена. Было бы разумно описать vec:: elem() как inline, поскольку, скорее всего, эффективность существенна, но необязательно, неразумно и невозможно написать ее так, чтобы она непосредственно использовала закрытый член v класса vector. Функции производного класса не имеют специального доступа к закрытым членам его базового класса.

Конструктор можно написать так:

vec::vec(int lb, int hb) : (hb-lb+1) (* if (hb-lb«0) hb = lb; low = lb; high = hb; *)

Запись: (hb-lb+1) используется для определения списка параметров конструктора базового класса vector::vector(). Этот конструктор вызывается перед телом vec::vec(). Вот небольшой пример, который можно запустить, если скомпилировать его вместе с остальными описаниями vector:

#include «streams.h»

void error(char* p) (* cerr «„ p «« «n“; // cerr – выходной поток сообщений об ошибках exit(1); *)

void vector::set_size(int) (* /* пустышка */ *)

1 ... 5 6 7 8 9 10 11 12 13 ... 70
Перейти на страницу:
На этой странице вы можете бесплатно скачать C++ - Страустрап Бьярн торрент бесплатно.
Комментарии