Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Научпоп » Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий - Коллектив авторов

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий - Коллектив авторов

Читать онлайн Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий - Коллектив авторов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 122
Перейти на страницу:

Но такой элемент и есть индий. Его эквивалент по наблюдению Винклера=37,8, следовательно, его атомный вес должен быть изменен (до сих пор признавали его=75, а окись за InO) в In=I 13 состав его окиси In2O3, его атом-аналоги из группы III суть Al и Tl, а из 7-го ряда — Cd и Sn…

Чтобы убедиться в справедливости приведенного выше изменения в формуле окиси индия и в атомном весе индия, я определил его теплоемкость и нашел ее (0,055) согласною с тем выводом, который был сделан на основании закона периодичности, но в то же время Бунзен, испытывая свой изящный калориметрический прием, также определил теплоемкость индия, и наши результаты оказались согласными (Бунзен дает число 0,057), а потому нет никакого сомнения в том, что путем применения закона периодичности есть возможность исправлять атомные веса мало исследованных элементов».

ИНДИЙ-ЗАЩИТНИК. Износостойкость материала обычно увеличивают, нанося на его поверхность какой-нибудь твердый сплав. Это понятно: при трении твердый покров мало истирается и защищает от износа основной материал. Однако можно повышать износостойкость и другим способом — нанесением мягкого индия. Дело в том, что индий значительно уменьшает коэффициент трения. Например, стальные фильеры для волочения алюминия после покрытия индием изнашиваются почти в полтора раза медленнее, чем обычные. Индий применяют также для защиты острий контактов и графитовых щеток в электроприборах.

На железо и сталь нельзя непосредственно наносить индий. Поэтому железные и стальные изделия сначала покрывают тонким слоем (до 0,025 мм) цинка или кадмия, затем наносят индий и нагревают до температуры чуть большей, чем температура плавления индия. За несколько часов выдержки при такой температуре индий и материал подслоя взаимно диффундируют. Образуется прочное, устойчивое к коррозии и истиранию покрытие.

ГОРИ, ГОРИ ЯСНО… Издавна считается, что лучше всего прожекторные зеркала делать из серебра. Однако, обладая высокой отражательной способностью, серебро довольно быстро тускнеет на воздухе. На помощь светотехникам пришел индий. Серебряные зеркала с индиевым покрытием не теряют отражательной способности намного дольше серебряных.

Соли индия применяют в качестве добавок к некоторым люминесцентным составам. Они уничтожают фосфоресценцию состава, после того как возбуждение снято. Если обычная люминесцентная лампа после выключения еще некоторое время продолжает светить, то лампа с составом, содержащим соли индия, гаснет сразу после выключения.

МЕТАЛЛИЧЕСКИЙ «МЫЛЬНЫЙ ПУЗЫРЬ». Тонкостенный полый шар или оболочку иной формы проще всего сделать так. Из легкоплавкого индиевого сплава отливают изделие нужной формы и электролитически покрывают его нужным металлом. После этого изделие нагревают, индиевый сплав плавится и выливается, а в руках мастера остается тонкая оболочка.

ИНДИЙ И СТЕКЛО. Соединить металл со стеклом можно при помощи простой пайки, если припоем служит известный сплав Вуда с добавкой 18% индия. Такой припой плавится при 46,5ºС. А чтобы сделать стекло проводящим электричество, его покрывают окисью индия. При этом прозрачность стекла практически не уменьшается. Индиевые нити применяют также для нанесения сеток па объективы телескопов.

ИНДИЙ В ПЛОМБЕ. Несколько лет назад в США запатентован новый материал для зубных пломб. Наряду с серебром, оловом, цинком и медью в его состав входит порошкообразный индий. Этот компонент сводит к минимуму усадку при затвердении композиции. В такой деликатной области применения, как стоматология, это важно. К тому же, материал отличается высокой коррозионной стойкостью и механической прочностью.

ОЛОВО

Олово — один из немногих металлов, известных человеку еще с доисторических времен. Олово и медь были открыты раньше железа, а сплав их, бронза, — это, по-видимому, самый первый «искусственный» материал, первый материал, приготовленный человеком.

Результаты археологических раскопок позволяют считать, что еще за пять тысячелетий до пашей эры люди умели выплавлять и само олово. Известно, что древние египтяне олово для производства бронзы возили из Персии.

Под названием «трапу» этот металл описан в древнеиндийской литературе. Латинское название олова stannum происходит от санскритского «ста», что означает «твердый».

Упоминание об олове встречается и у Гомера. Почти за десять веков до новой эры финикияне доставляли оловянную руду с Британских островов, называвшихся тогда Касситеридами. Отсюда название касситерита — важнейшего из минералов олова; состав его SnO2. Другой важный минерал — станнин, или оловянный колчедан, Cu2FeSnS4. Остальные 14 минералов элемента № 50 встречаются намного реже и промышленного значения не имеют.

Между прочим, наши предки располагали более богатыми оловянными рудами, чем мы. Можно было выплавлять металл непосредственно из руд, находящихся на поверхности Земли и обогащенных в ходе естественных процессов выветривания и вымывания. В наше время таких РУД уже нет. В современных условиях процесс получения олова многоступенчатый и трудоемкий. Руды, из которых выплавляют олово теперь, сложны по составу: кроме элемента № 50 (в виде окисла или сульфида) в них обычно присутствуют кремний, железо, свинец, медь, цинк, мышьяк, алюминий, кальций, вольфрам и другие элементы. Нынешние оловянные руды редко содержат больше 1% Sn, а россыпи — и того меньше: 0,01–0,02% Sn. Это значит, что для получения килограмма олова необходимо добыть и переработать по меньшей мере центнер руды.

Как получают олово из руд

Производство элемента № 50 из руд и россыпей всегда начинается с обогащения. Методы обогащения оловянных руд довольно разнообразны. Применяют, в частности, гравитационный метод, основанный на различии плотности основного и сопутствующих минералов. При этом нельзя забывать, что сопутствующие далеко не всегда бывают пустой породой. Часто они содержат ценные металлы, например вольфрам, титан, лантаноиды. В таких случаях из оловянной руды пытаются извлечь все ценные компоненты.

Состав полученного оловянного концентрата зависит от сырья и еще от того, каким способом этот концентрат получали. Содержание олова в нем колеблется от 40 до 70%. Концентрат направляют в печи для обжига (при 600–700°C), где из него удаляются относительно летучие примеси мышьяка и серы. А большую часть железа, сурьмы, висмута и некоторых других металлов уже после обжига выщелачивают соляной кислотой. После того как это сделано, остается отделить олово от кислорода и кремни. Поэтому последняя стадия производства чернового олова — плавка с углем и флюсами в отражательных или электрических печах. С физико-химической точки зрения этот процесс аналогичен доменному: углерод «отнимает» у олова кислород, а флюсы превращают двуокись кремния в легкий по сравнению с металлом шлак.

В черновом олове примесей еще довольно много: 5–8%. Чтобы получить металл сортовых марок (96,5–99,9% Sn), используют огневое или реже электролитическое рафинирование. А нужное полупроводниковой промышленности олово чистотой почти шесть девяток — 99,99985% Sn — получают преимущественно методом зонной плавки.

Еще один источник

Для того чтобы получить килограмм олова, не обязательно перерабатывать центнер руды. Можно поступить иначе: «ободрать» 2000 старых консервных банок.

Всего лишь полграмма олова приходится на каждую банку. Но помноженные на масштабы производства эти полуграммы превращаются в десятки тони… Доля «вторичного» олова в промышленности капиталистических стран составляет примерно треть общего производства. В нашей стране работают десятки промышленных установок по регенерации олова.

Как же снимают олово с белой жести? Механическими способами сделать это почти невозможно, поэтому используют различие в химических свойствах железа и олова. Чаще всего жесть обрабатывают газообразным хлором. Железо в отсутствие влаги с ним не реагирует. Олово же соединяется с хлором очень легко. Образуется дымящаяся жидкость — хлорное олово SnCl4, которое применяют в химической и текстильной промышленности или отправляют в электролизер, чтобы получить там из него металлическое олово. И опять начнется «круговерть»: этим оловом покроют стальные листы, получат белую жесть. Из нее сделают банки, банки заполнят едой и запечатают. Потом их вскроют, консервы съедят, банки выбросят. А потом они (не все, к сожалению) вновь попадут на заводы «вторичного» олова.

Другие элементы совершают круговорот в природе с участием растений, микроорганизмов и т. д. Круговорот олова — дело рук человеческих.

Олово в сплавах

На консервные банки идет примерно половина мирового производства олова. Другая половина — в металлургию, для получения различных сплавов. Мы не будем подробно рассказывать о самом известном из сплавов олова — бронзе, адресуя читателей к статье о меди — другом важнейшем компоненте бронз. Это тем более оправдано, что есть безоловянные бронзы, но нет «безмедных». Одна из главных причин создания безоловянных бронз — дефицитность элемента № 50. Тем не менее бронза, содержащая олово, по-прежнему остается важным материалом и для машиностроения, и для искусства.

1 ... 5 6 7 8 9 10 11 12 13 ... 122
Перейти на страницу:
На этой странице вы можете бесплатно скачать Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий - Коллектив авторов торрент бесплатно.
Комментарии