- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Катастрофы в природе и обществе - Абрам Фет
Шрифт:
Интервал:
Закладка:
Концентрация загрязнения среды, меняющаяся со временем, аналогична численности популяции насекомых, рассмотренной в главе 1, с тем отличием, что концентрация в последующие моменты времени зависит не только от концентрации в предыдущие моменты, но еще от выбросов загрязняющего предприятия. Если продолжить аналогию с насекомыми, то надо допустить не только "развитие" их "туземной" популяции, живущей на данной территории, но также непрерывный или периодический завоз насекомых извне.
Отвлечемся сначала от загрязняющего предприятия и займемся свойствами загрязняемой среды. Фиксируем пункт местности, где изучается загрязнение, и тем самым свойства среды в этом месте и расстояние от загрязняющего предприятия. Вся излагаемая дальше динамика загрязнения относится к выбранному пункту. Будем считать, что рассматривается вполне определенный загрязнитель, попавший (все равно, каким образом) во вполне определенную среду. Чтобы установить временно'е изменение загрязнения, можно воспользоваться уже известным нам методом фазовых портретов. В отличие от специальных условий главы 1, где был естественный период развития популяции в один год, после которого происходит смена поколений, ситуация с выбросами и разрушением загрязнителя может быть самой разнообразной. Поэтому последовательные наблюдения концентрации можно производить через равные промежутки времени, продолжительность которых будет зависеть от скорости процессов загрязнения и разрушения загрязнителя. Для простоты мы будем условно называть такой произвольно выбранный промежуток времени "годом". Но в действительности продолжительность этого периода выбирается в зависимости от рассматриваемой задачи.
По аналогии с методом фазовых портретов главы 1, произведем в текущем году, например, 1 января, измерение концентрации загрязнителя в среде и обозначим полученную величину через К; повторим измерение через год и обозначим полученную величину через М. Предположим, что в течение года наблюдения никакие добавочные загрязнения в среду не вносятся. Тогда можно назвать пару чисел (К,М) "стандартным наблюдением" разрушения (или, на ученом языке,"деструкции") данного загрязнителя в данной среде. Производя ряд таких наблюдений, можно получить фазовый портрет деструкции и построить "облако" соответствующих точек на плоскости с координатами (К,М). Есть основания полагать, что величина М зависит преимущественно от К, хотя, разумеется, на процесс деструкции в течение года могут влиять и различные случайные обстоятельства – погода, перемещение почвенных вод и т.д. Пренебрегая этими отклонениями, будем считать, что М есть вполне определенная функция от К: М = f(К), и назовем ее функцией деструкции.
Как обычно в исследовании сложных систем, мы не можем описать эту функцию формулой, а находим ее с помощью многократных измерений указанного типа, которые мы назвали стандартными наблюдениями. Имея график такой функции, можно решить ряд вопросов, возникающих при промышленном загрязнении среды. В отличие от главы 1, в рассматриваемом теперь случае всегда М < К, то есть концентрация загрязнителя может только уменьшаться: среда перерабатывает его с помощью каких-либо механизмов в другие вещества, не вызывающие у нас опасений, или выводит его в другие среды – например, из почвы в воздух, или наоборот. Мы считаем, что загрязнитель, попавший в среду, сам по себе не размножается, как это может быть в случае бактериальных загрязнений; нас интересуют только "мертвые" загрязнения.
Подчеркнем, что мы сосредоточиваем здесь внимание только на одной рассматриваемой среде и одном загрязняющем веществе, не принимая во внимание возможной вредности этого вещества после перемещения его в другую среду. Для другой среды будет и другая функция деструкции.
Имеющиеся экспериментальные данные позволяют сделать некоторые общие предположения о функциях деструкции. Мы предположим, что деструкция загрязнителя осуществляется двумя типами разрушителей – живыми и мертвыми. Упрощенная картина их действия изображена на рисунке 1. Так как количество загрязнения в наших предположениях может только убывать, то имеем M < K; таким образом, весь фазовый график лежит ниже биссектрисы координатного угла. (В аналогии с насекомыми это означало бы, что их популяция, без завоза со стороны, вымирает).
Рис.1
При K = 0, то есть при отсутствии начального загрязнения, его не будет и в конце наблюдения, и будет M = 0; поэтому M(0) = 0. При небольших значениях К можно предположить, что оба фактора деструкции действуют совместно линейным образом: это значит, что за год они уменьшают концентрацию загрязнителя в постоянное число раз: M = c1K , где с1 < 1. На рисунке 1 этому соответствует прямолинейный участок фазовой кривой, где отношение M/K постоянно и меньше единицы, так что этот участок образует с осью K угол, меньший 450. При бо'льших концентрациях K живой разрушитель вымирает, подавленный химическим изменением среды; при этом мертвый разрушитель действует по-прежнему линейно, но теперь разрушается меньшая доля загрязнителя. Иначе говоря, при дальнейшем возрастании K отношение M/K растет. Геометрически это означает, что для точки фазовой кривой P с координатами (K,M) хорда OP образует все больший угол с осью K (рис.1). Наконец, весь живой разрушитель перестает действовать и остается только мертвый, действующий линейно, но менее интенсивно, чем вместе с живым: M = c2K, где 0 < c1 < c2 < 1. На рисунке 1 это изображается прямолинейным участком справа, причем на этом участке отношение M/K постоянно и, значит, эта прямая тоже проходит (при продолжении) через начало координат.
В менее распространенном случае при увеличении концентрации загрязнителя среда "включает" некоторые добавочные механизмы его деструкции, так что начиная с определенного уровня загрязнения отношение М/К убывает: это значит, что среда разрушает бо'льшую долю загрязняющего вещества, чем при малых концентрациях. На графике наклон прямой ОР при этом уменьшается, и кривая несколько "провисает" книзу, как это видно на рисунке 2 Но при дальнейшем увеличении концентрации отношение М/К опять начинает расти, и дальше все происходит, как на предыдущем рисунке.
Рис.2
При рассмотрении рисунка 1 (или 2) бросается в глаза, что отношение M/K все время заметно меньше 1, то есть в течение периода между наблюдениями , который мы условно назвали "годом", происходит значительное изменение концентрации. Следуя терминологии физиков, время, в течение которого величина меняется достаточно сильно, но не слишком сильно, то есть, в нашем случае,
a < M/K < b
где a и b имеют порядок единицы [То есть отношение a/b больше 0,1, но меньше 10], называется "характерным временем" изменения этой величины. На рисунке 1 характерное время изменения концентрации имеет порядок одного "года". Если бы мы выбрали период между наблюдениями много меньше характерного времени, то за такой период деструкция оказалась бы незначительной, то есть M/K было бы близко к 1, и фазовый портрет практически совпал бы с биссектрисой координатного угла. Такой график был бы непригоден для выяснения практически важных вопросов об изменении концентрации. Точно так же, если выбрать период между наблюдениями намного больше характерного времени, то M/K будет почти равно нулю, и фазовый портрет практически совпадет с осью K, то есть опять-таки будет бесполезен. Поэтому для предсказания процессов загрязнения следует брать в качестве периода время, сравнимое с характерным временем деструкции загрязнителя. В одних случаях этот период может составить десятки лет, в других – несколько дней. Таким образом, период, по которому составляется фазовый портрет концентрации, от случая к случаю меняется, в зависимости от процесса выбросов и процесса деструкции. Мы будем условно называть этот период "годом", но следует иметь в виду, что, в отличие от биологически обусловленного периода размножения, рассмотренного в главе 1, при исследовании загрязнения среды "год" может иметь различное значение.
Фазовый портрет деструкции загрязнения – важная характеристика среды по отношению к рассматриваемому веществу, к сожалению, до сих пор почти не изученная. Покажем, как можно пользоваться ею для предсказания последствий промышленного загрязнения.
Начнем с однократного выброса загрязнителя, когда после выброса дальнейшее загрязнение не происходит, и к которому, по определению, относятся фазовые портреты рисунков 1, 2. Такое загрязнение не характерно для постоянно действующих предприятий, а скорее описывает катастрофу, вроде хиросимской атомной бомбы или чернобыльского взрыва. Именно в этих печальных случаях были проведены подробные исследования концентрации в различных средах, позволяющие составить фазовые портреты деструкции для некоторых веществ, особенно радиоактивных. Катастрофы доставили материал для научных экспериментов – вопреки нравственному закону, запрещающему ставить эксперименты на людях!

