- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Занимательная электроника - Юрий Ревич
Шрифт:
Интервал:
Закладка:
Специальные буферные элементы с мощным выходом применяют для того, чтобы усилить выходы КМОП: с инверсией — 561ЛН2 или без нее — 561ПУ4. Они содержат шесть таких инверторов или буферов в одном корпусе. Отметим, что точного импортного аналога микросхемы 561ЛН2 не существует, при копировании наши разработчики улучшили микросхему CD4049, избавившись от лишних контактов корпуса. Правда, они не пошли до конца и не сделали то же самое для микросхемы 561ПУ4, содержащей 6 буферных усилителей без инверсии. В результате у 561ПУ4, у ее аналога CD4050, как и у CD4049, плюс питания присоединяется нестандартно — к выводу 1, а выводы 13 и 16 — не задействованы (и, напомним, не должны никуда присоединяться, что обозначено буковками NC — No Connected).
* * *
Заметки на полях
Объяснение этой кажущейся несуразице с лишними выводами одновходовых элементов простое — в первой серии 4000 (К176) существовали преобразователи уровня для перехода от 9-вольтовой КМОП-логики к 5-вольтовой ТТЛ (откуда и отечественное название ПУ). В этих преобразователях на вывод 16 подавалось еще одно напряжение питания 9 В. В сериях 4000А и 4000В необходимость в дополнительном питании отпала (они и сами чудесно работают при питании 5 В), а разводка выводов осталась.
* * *
Следует отметить, что по внутреннему устройству микросхемы с одновходовыми элементами, вероятно, самые простые из всех микросхем вообще. Элемент с инверсией (ЛН2, 4049) состоит всего из двух транзисторов (см. рис. 15.1 справа), а буферный элемент (ПУ4, 4050) — из двух таких инверторов, включенных последовательно. Однако у них есть один эксплуатационный нюанс, который также унаследован от времен, когда такие микросхемы служили для перехода от КМОП к ТТЛ.
Он заключается в том, что нижний транзистор выходного каскада мощнее верхнего. В результате в состоянии логического нуля по выходу эти микросхемы могут принять большой втекающий ток без ущерба для логических уровней — 3–5 мА при питании 5 В, и до 40 мА при 15 В. А вот в состоянии логической единицы значения выходного тока у них стандартные для «классической» КМОП — 1,6 мА при 5 В и до 12 мА при 15 В питания. При практическом применении ЛН2 и ПУ4 эту несимметрию нужно учитывать.
В отличие от «классических», быстродействующие аналоги 74НС4049 и 74НС4050 (в АС-версии их не существует, там есть аналоги только с открытым истоком, см. приложение 5) полностью симметричны, допускают долговременный как втекающий, так и вытекающий выходной ток через каждый вывод до 25 мА (но не более 50 мА в сумме по всем выводам) и предпочтительны для использования при напряжениях питания 3–5 В.
Выходы обычных логических элементов можно объединять с целью умощнения — например, выход одного инвертора в составе микросхемы ЛН2 формально «тянет» ток до 3,2 мА при 5 В питания (на самом деле гораздо больше, если выйти за пределы ограничений, накладываемых условием ненарушения логических уровней), а если соединить выходы всех шести входящих в состав микросхемы элементов, то можно подключать нагрузку до 20 мА, — главное, не превысить допустимый ток через вывод питания. Естественно, при этом необходимо также объединить и входы, превратив всю микросхему как бы в один мощный инвертор.
Есть, разумеется, и логические элементы с большим количеством входов. Я не буду приводить здесь разводку выводов других типов логических микросхем, чтобы не загромождать текст, т. к. наличие отдельного справочника по ним в любом случае обязательно. В качестве справочника, в котором приведены не только основные сведения и разводка выводов, но и подробно объясняется работа микросхем базовых серий с многочисленными примерами, я бы рекомендовал разыскать у букинистов или скачать из Сети книгу [18]. Это суперпопулярное пособие вышло в свое время несколькими изданиями и почти не устарело (правда, некоторых современных типов микросхем в нем нет). В Сети, разумеется, можно найти и другие подобные справочники.
Следующей широко употребляемой разновидностью логических микросхем являются элементы, имеющие выход с открытым истоком (с открытым коллектором для ТТЛ). Такой выход, как мы помним, имеет компаратор 521САЗ (см. главу 12). Есть такие элементы и с чисто логическими функциями: в КМОП-серии это CD40107 (561ЛА10, содержит два двухвходовых элемента «И-НЕ»), в быстродействующих КМОП это 74НС05 (шесть инверторов, аналог ЛА10 под названием 74НС22 снят с производства). Причем CD40107 может коммутировать значительный втекающий ток — аж до 136 мА при 25 °C и 10 В питания, и 70 мА при 5 В. 74НС05 скромнее, и коммутирует стандартные для этой серии 20 мА.
Эти элементы используют не только для коммутации мощной нагрузки, но и для объединения на общей шине в так называемое проводное или монтажное «ИЛИ» (рис. 15.4). Название это, на мой взгляд, несколько неудачное, ибо соответствует отрицательной логике — на общей шине логическая единица будет только тогда, когда выходы всех элементов установятся в 1, а если хотя бы один выход находится в нуле, то и на шине будет ноль, что в положительной логике соответствует операции «И».
Рис. 15.4. Объединение элементов с открытым коллектором по схеме «проводное ИЛИ»
Для объединения выходов могут служить и так называемые элементы с третьим состоянием. Это соответствует не логическому понятию состояния, а электрическому, — третье состояние в данном случае обозначает просто обрыв, отключение выхода элемента от вывода микросхемы. Такие элементы имеются и в составе серий, но наиболее часто применяются в составе более сложных микросхем. Например, выводы многих микроконтроллеров или микропроцессоров имеют возможность переключения в третье состояние.
* * *
Заметки на полях
Мы часто будем усиливать выходы КМОП-микросхем с помощью отдельного ключевого транзистора, и схема его включения может представлять в данном случае исключение из того правила, что в ключевом режиме обязательно «привязывать» базу к «земле», как это было оговорено в главе 6 (см. рис. 6.4 и относящийся к нему текст). Дело в том, что подключенная к выходу логического элемента база транзистора всегда будет привязана через токоограничивающий резистор к какому-нибудь потенциалу, и в воздухе никогда не «повиснет», поэтому и запирающий резистор можно не ставить.
Однако это не относится к случаю, когда база управляется от выхода ТТЛ-микросхемы через диод, включенный в прямом направлении, как это часто делают, чтобы обеспечить надежное запирание транзистора (см., например, [3]). На мой взгляд, ставить такой диод совершенно не требуется, но если уж автор построил схему именно так, то нужно ставить и запирающий резистор, потому что при нулевом потенциале на выходе микросхемы диод запирается, и база тогда «повисает» в воздухе.
Двоичный сумматор на логических микросхемахЗаметим сразу, что схема этого устройства в том виде, в котором мы ее сейчас будем конструировать, сама по себе довольно бесполезна — если вы, конечно, не хотите повторить подвиг советского конструктора Михаила Александровича Карцева. Он создал в 1970-х годах на микросхемах малой степени интеграции (т. е. фактически на отдельных логических элементах) очень удачную ЭВМ под названием М-10, замечательную тем, что отдельные ее экземпляры в нашем оборонном комплексе продержались аж до начала нового тысячелетия. При желании повторить такой подвиг, учтите, что основная проблема, которую вам придется решать, состоит вовсе не в том, чтобы такую машину сконструировать схемотехнически — это не самая трудная часть работы. Самое трудное для подобных суперконструкций — решить проблему отвода тепла, выделяемого сотнями тысяч быстродействующих логических микросхем. Суперкомпьютеры Cray на отдельных логических элементах, выпускаемые в 1980-х годах, даже имели водяное охлаждение.
Наконец, если очень хочется, то готовый двоичный сумматор есть в интегральном исполнении (561ИМ1; есть сумматоры и помощнее). Зачем же мы тогда будем его конструировать? А затем, что его устройство очень хорошо иллюстрирует две вещи: во-первых, само применение логических микросхем, во-вторых — разве не любопытно знать, как устроен самый главный узел компьютера, арифметико-логическое устройство, АЛУ? Знание этого вам очень пригодится для лучшего понимания работы микроконтроллеров и принципов их программирования. Кроме того, мы на этом примере познакомимся еще с одним важным типом логических элементов.
Итак, вспомним, что нам, собственно, нужно делать — а именно: воспроизвести таблицу сложения двоичных чисел, которая была показана для одноразрядных чисел в главе 14. Так как при сложении единиц получается двухразрядное двоичное число, то перепишем эту таблицу в двухразрядном представлении:

