- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Павел Флоренский История и философия искусства - Павел Флоренский
Шрифт:
Интервал:
Закладка:
Вы помните Ницше, идею о вечном возвращении[222], которая идет из глубокой древности: есть некий Мировой Год, подобно тому как по окончании года астрономическое явление начинает повторяться, должны повторяться и исторические события, все то же самое. Когда говорил Ницше о том, что все, что происходит, будет повторяться, он не мыслил, что это те же самые явления, это такие же самые явления. Время тут мыслится бесконечным и беспредельным. При этой концепции каждая из мировых координат мыслится беспредельной и бесконечной.
Я хочу различить эти два понятия —беспредельности и бесконечности. Возьмем поверхность, мир двухмерный вместо одномерного, линейного мира. Берем сферу. Эта поверхность беспредельна, но не бесконечна. Если бы мы захотели некоторую площадку на сфере увеличивать, для чего должны бы увеличивать радиус окружности, мы достигаем (пропуск 1 /з строки), которая равна половине полной поверхности сферы. Наконец, она дойдет до полной сферы. Если бы захотели еще дальше увеличивать, то мы увидим, что увеличить поверхность мы не можем, но двигаться на сфере нам никто не мешает, но поверхность мы бы захватывали, взятую раньше, мы ничего к ней не прибавили.
То же самое вы должны отнести к объему. Формально перенесите на трехмерное пространство это понятие замкнутости. Тогда, если бы вы стали увеличивать некий объем, если у вас некоторый клубок дыма стал бы все возрастать и, наконец, занял бы собою все пространство, то, хотя бы частицы могли двигаться дальше, но объем не мог бы возрастать. Евклидовское пространство мыслится как беспредельное и бесконечное в противоположность пространству, которое мыслится беспредельным, но не бесконечным. И, наконец, мыслится пространство, которое и не беспредельно и не бесконечно.
Спросим себя по отношению к пространству художественного произведения — можем ли мы его назвать бесконечным? Ясное дело, что нет, что самая идея бесконечности была бы отрицательна, это было бы утверждение, что есть какие‑то области, которые мы в своем восприятии никогда не достигнем в этом произведении, что в нем какие‑то области достижимы, а что‑то всегда остается вне нашего восприятия, какие‑то темные основы. Если это чувство в нас рождается, то нам делается неприятно, и тогда вместо замкнутого пространства художественного произведения мы начинаем чувствовать конец этого произведения, и (пропуск */з строки) какойто мрак. Оно не является в хорошем смысле рациональным. Может быть, когда мы имеем дело с (рамой?), это зрение и есть привкус этой бесконечности или, во всяком случае, такой чрезмерности, которая не доступна оценке восприятия.
Если мы возьмем беспредельность, то тут наоборот естественно ждать, что в большинстве случаев художественное произведение является пространством беспредельным, т. е. что мы никогда зде. сь не натыкаемся на что‑то, что мешало бы восприятию произведения. Это смыкание. Если вы возьмете картину, она не всегда должна быть и физически замкнута. Очень часто бывают случаи, когда смыкаются края картины в художественном восприятии, а физически они разомкнуты. Когда, подходя к краю картины, мы сразу воспринимаем противоположный край, картина является циклической, внутренне замкнутой.
Евклидовское пространство непрерывно. Точно определять это понятие я сейчас не стану, это нам сейчас не важно, а самым грубым образом и предварительно. Это значит, что отдельные его части связаны так, что всегда есть возможность перейти от одной части к другой, нет в пространстве такой (пропуск 1/4 строки), через которые мы не могли бы перейти. Если мы говорим о механическом движении пространства, это значит, что никакая материальная точка не может очутиться в каком‑то другом положении, не пройдя через все промежутки и находясь в них каждые последовательные моменты времени.
В мире, если его мыслить по–евклидовски, нет никаких областей абсолютно нового пространства. От всего этого переход ко всему. Можно ли применить этот признак евклидовского пространства к пространству художественного произведения? Разумеется, нет. Бывают очень часто случаи, когда пространство художественного произведения распадается на несколько подпространств, имеющих каждое свое особое качество и связанных между собою некоторым новым пространством, но таким, что прямого перехода от одного пространства к другим нет, есть скачок. Например, когда на картине изображена картина. Пространство основной картины не допускает переходить в пространство картины, изображенной на картине, потому что картина должна быть самозамкнутым целым. Зрительно в некоторых случаях можно говорить о непрерывности пространства художественного произведения. В частности, осязательно этой прерывностью пространства пользуются художники для разных целей, например, для изображения видений, для изображения вида в окно, когда дается совсем другое пространство, никак не соотносимое с пространством в комнате[223].
Два последних признака(— однородность и изотропность. Под однородностью пространства) разумеется одинаковость качества, какие бы вырезки из пространства мы ни взяли. Все равно, вырезать ли из евклидовского пространства на Луне или на Земле, мы мыслим его абсолютно тождественным по качеству. Под изотропностью разумеется одинаковость качеств пространства по всем направлениям. Эти лучи по вертикали и горизонтали, они будут тождественны по своим качествам. Они отличаются между собою условно и соотносительно — если я одну считаю горизонталью, то другую я называю вертикалью, а хотите, и наоборот. То и другое свойство вовсе не присуще пространству вообще, т. е. нет оснований ждать, чтобы оно было присуще пространству художественного произведения.
Но относительно того, что оно не присуще и вообще пространству действительного восприятия, вы можете судить и по тому, что для нас горизонтальная и вертикальная плоскость вовсе не одно и то же, для нас не все равно, положить картину так или так, качества картины от этого меняются. Пространство художественного произведения, как и пространство восприятия, не изотропно, лучи по разным направлениям обладают разными свойствами. Есть некоторое абсолютное направление в пространстве, которое мы не смешаем с другими. Нам не все равно, идет ли луч справа налево или наоборот. Возьмите любой приличный рисунок и посмотрите на свет. С другой стороны, направление вперед и назад и направление горизонтали справа налево и слева направо вовсе не тождественны. Для них существует особая мера, масштаб, и особая чувственная окраска.
Теперь у нас есть вопрос об однородности. Конечно, в нашем непосредственном восприятии не все равно, взять ли вырезку пространства около меня или за сто верст от меня, взять ли кусок пространства здесь или в конце комнаты. Здесь он доступен моему непосредственному опыту, осязательному, а там — только зрительному. Зрение будет действовать иначе тут, чем там.
В художественном произведении вы увидите, что каждый квадратный сантиметр, взятый в том или другом месте, имеет особый масштаб, качественность и особые законы. Он далеко не тождественен с другим квадратным сантиметром. Тут пространство художественного произведения не однородно, как и не изотропно.
По всем признакам, характерным для евклидовского пространства, художественное пространство отличается от этого пространства. Прямой перенос евклидовского пространства на художественное произведение есть только недоразумение.
(8–я ЛЕКЦИЯ[224])
(Дата в рукописи не указана)
Строение пространства характеризуется его кривизною. Мне очень совестно, что я надоедаю математическими понятиями, но я не вижу иного пути, чтобы подойти к проблемам эстетическим. То, что выработано современной математикой, может быть вполне перенесено в область эстетики, но, к сожалению, я не могу ссылаться на ее собственные понятия. Понятие кривизны позволяет еще досадить вам математикой.
Прежде всего, кривизна по отношению к одномерному пространству, т. е.(к) линии. Но тут это представляется вполне ясным. Если мы к какой‑нибудь точке этой кривой проведем касательную, то мы видим, что эта прямая отступает от касательной и она искривляется. Мерою искривления служит быстрота (удаления от) этой касательной. Для того чтобы измерить кривизну, нужно взять за единицу какую‑то постоянную кривизну, кривизну такой кривой, которая во всех точках одна и та же. Если я знаю радиус касательной (окружности), то он характеризует меру кривизны[225].
Если мы перейдем к пространству двух измерений, к поверхности, то тут понятие кривизны будет сложнее. По аналогии естественно было бы желать к этой кривой поверхности прикоснуться в искомой точке, некоторой сфере, которая бы и характеризовала эту кривизну. Но, вообще говоря, этого нельзя сделать. Кривая линия изгибается только в одном смысле, поверхность может изгибаться в двух смыслах. Она может быть изогнута только по направлению противоположному или еще изогнуться или не изгибаться. Если взять лист бумаги, вы его можете изогнуть. Следовательно, нельзя сказать, что радиус окружности, который соприкасается с соответственным сечением поверхности, будет везде один и тот же, что кривизна по всем направлениям будет одна и та же.
