- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
История лазера - Марио Бертолотти
Шрифт:
Интервал:
Закладка:
Системы криптографии, такие, как только что описанная, или основанные на экспериментах другого вида, были экспериментально продемонстрированы и выглядят весьма обещающими.
Захват атомов
В 1997 г. Нобелевская премия по физике была присуждена Стивену Чу (г. р. 1948) из Стэнфордского университета (США), Клоду Коен-Тануджи (г. р. 1933) из Коллеж де Франс и Эколь Нормаль Супериор (Франция) и Вильяму Филлипсу из Национального Института Стандартов и Технологии (США) за разработку методов охлаждения и захват в ловушки атомов с помощью лазеров. В захвате атомов в ловушку и их охлаждение с помощью лазеров участвуют два разных процесса, которые, однако, связаны. Поскольку ловушки для нейтральных атомов обычно обладают малой глубиной, нужно охладить атомы до температуры ниже 1 К, а уж потом думать, как их захватить в ловушку. Охлаждение атомного газа с помощью лазеров было предложено в 1975 г. Теодором Хэншем и Артуром Шавловым из Стенфордского университета (США). В тот же год Дэвид Вайнланд и Ганс Демелт из университета штата Вашингтон (Сиетл, США) предложили аналогичную схему охлаждения ионов. За работу с ионами Демелт (г. р. 1922) и Вольфанг Поль (1913—1993) из Боннского университета (ФРГ) разделили Нобелевскую премию по физике за 1989 г. («за разработку методики ловушек ионов») с Н. Рамси.
Принцип охлаждения с помощью лазера основан на передаче импульса фотона атому. Атом при поглощении фотона получает толчок в направлении, в котором летел фотон. При последующем излучении фотона, атом испытывает отдачу. Если испускание спонтанно, тогда направления испускания фотонов хаотичны. Серия поглощений и последующих излучений передает импульс атому в направление лазерного пучка, в то время как отдача усредняется до нуля. В результате атом, который двигается навстречу лазерному пучку, замедляется, подобно велосипедисту, катящемуся против ветра.
В 1960-х гг. Филлипс со своими сотрудниками использовал этот принцип для замедления пучка атомов натрия, а в 1985 г. они захватили охлажденный таким способом пучок с помощью магнитного поля.
В 1985 г. Чу со своими сотрудниками добился успеха в охлаждении атомного газа, используя шесть лазерных пучков, сформированных в пары с противоположными направлениями и при ортогональном расположении этих пар. В такой конфигурации каждый атом двигался в произвольном направлении, замедляя скорость своего движения.
Тремя годами позднее Коен-Тануджи открыл способ охлаждать атомы до температур, невозможными с помощью этих простых методов, используя процессы квантовой интерференции в лазерных пучках, распространяющихся навстречу друг другу. В 1995 г. он сумел охладить газ из атомов гелия до фантастически низкой температуры, только на 4 миллионных долей градуса выше абсолютного нуля.
Методики охлаждения и захвата нейтральных атомов позволили продемонстрировать конденсацию Бозе—Эйнштейна и открыли возможность создания часов с невообразимой точностью хода, сверхпрецизионные методы измерения гравитации и др.
Конденсация Бозе-Эйнштейна
Несомненно, одним из наиболее впечатляемых результатов современной физики было полученное в 1995 г. экспериментальное доказательство конденсации Бозе—Эйнштейна. В 1924 г. Эйнштейн предсказал существование особого состояния материи, в котором все атомы с определенными свойствами, т.н. бозоны (со спинами, кратными h), могут оставаться с совершенно одинаковыми квантовыми свойствами. В 1995 г. В 1995 г. Эрик Корнел (г. р. 1962) из Национального Института стандартов и технологий и Карл Виман (г. р. 1951) из университета Колорадо сумели охладить с помощью лазерного пучка атомы рубидия и захватить их в магнитную ловушку. Затем было произведено дополнительное охлаждение с помощью метода, называемого испарительным охлаждением, действующим так же, как охлаждается чашка чая, т.е. позволяя улетучиваться более горячим атомам.
Когда достигается очень низкая температура, атомы в новом состоянии начинают двигаться вместе с одной и той же скоростью и в одном и том же направлении, вместо того, чтобы двигаться произвольно, как это имеет место для обычного газа. Атомы теряют свою индивидуальность и теперь становятся одиночной коллективной единицей. Их организованная конфигурация приводит к необычным свойствам. Конденсация Бозе—Эйнштейна получалась в облаке атомов рубидия-87, которые охлаждались до ~ 170 нК. Самый полный образец содержал около 2000 атомов, которые в течение более, чем 15 сек находились в одиночном квантовом состоянии. Вольфганг Кеттерль (г. р. 1957) и его группа из MIT (США) сумели получить конденсат натрия-23, содержащий в сто раз больше атомов. Корнел, Кеттерль и Виман получили в 2001 г. Нобелевскую премию по физике «за достижение конденсации Бозе-Эйнштейна в разряженных газах и за пионерские, фундаментальные изучения свойств этого конденсата». С помощью конденсата Бозе-Эйнштейна возможно изучить некоторые аспекты квантовой механики и, может быть, лучше понять явление сверхпроводимости (свойство некоторых материалов совершенно терять электрическое сопротивление). Происхождение Вселенной, также связывают в некоторых теориях с конденсацией Бозе-Эйнштейна.
Поведение таких сконденсированных атомов по сравнению с обычными атомами, напоминает отличия лазерного свет от света обычной лампы. В лазерном свете все фотоны в фазе — свойство, которое делает лазерные пучки мощными и способными быть сфокусированными в очень малое пятно. Подобным же образом, атомы в конденсате Бозе—Эйнштейна все находятся в фазе, и физики работают над тем, чтобы они вели себя так, чтобы быть «атомным лазером». Такой пучок атомов допускает манипуляции и измерения в удивительно малых масштабах. В атомном лазере все атомы могут двигаться как один. Такие атомные лазеры можно было бы использовать для помещения атомов на подложку с экстраординарной точностью, заменяя обычную фотолитографию. Можно было бы построить и атомный интерферометр, который, поскольку длины волн атомов (волны де Бройля) много меньше световых, мог бы производить измерения с большей точностью по сравнению с лазерным интерферометром. Это позволило бы создать более точные атомные часы, получить и изучить нелинейные взаимодействия, подобные оптическим, и т.д.
Мы могли бы представить много других применений и будущих перспектив лазеров, но надеемся, что и то, о чем говорилось, вполне достаточно, чтобы понять замечательные возможности лазерных устройств в современном обществе.
ИЛЛЮСТРАЦИИ
Место рождении Ньютона, Вулстроп и Англии Иоганн Якоб Бальмер Джозеф Джон Томсон Вильгельм Вин Густав Роберт Кирхгоф Генрих Гери Александр Степанович Попов Участники первого Сольвеевского Конгресса в Брюсселе в 1911 г. Нильс Бор (слева) и Вольфганг Паули (справа) в Брюсселе во время Сольвеевского КонгрессаАльберт Эйнштейн (справа) получает медаль от Макса Планка (слева) в 1929 г. Джеймс Франк (слева) и Густав Герц (справа) Питер Зееман (слева), Альберт Эйнштейн (в центре) и Пауль Эренфест в лаборатории Зеемана в Амстердаме Слева на право: Вальтер Нернст, Альберт Эйнштейн, Макс Планк, Роберт Эндрю Милликен и Макс фон Лауэ в Берлине, 1928 г. Роберт Эндрю Милликен (слева) и Отто Штерн (справа) в 1928 г. Эрнест Резерфорд (справа) в Кавендишской лаборатории, Кембридж, 1935 г. Нильс Бор (слева) и Макс Планк (справа) в 1930 г. Хендрик Антон Крамерс, 1937 г. Рудольф Вальтер Лаленбург в своей лаборатории Эйнштейн и Лаленбург Норман Фостер Рамси с установкой молекулярного пучка (Гарвард, 1952 г.) Исидор Исаак Раби в своей лаборатории Эдвард Милс Парселл Поликарп Куш Чарльз Хард Таунс (слева) и Джеймс Гордон в 1954 г. со своим вторым мазером в Колумбийском университете Роберт Генри Дике, 1962 г. Теодор Гарольд Мейман Артур Шавлов, 1963 г. Александр Михайлович Прохоров (слепа), Чарльз Хард Таунс (в центре) и Николай Геннадиевич Басов в СССР (ФИАН 1965 г.) Евгений Константинович Завойский Феликс Блох, 1973 г. Николаас Бломберген Арно Пензиас (слева) и Роберт Вудро Вилсон (справа) в 1978 г. На заднем плане радиотелескоп с большой рупорной антенной, с помощью которого было открыто фоновое космическое излучениеПримечания

