Рождение сложности: Эволюционная биология сегодня - Александр Марков
Шрифт:
Интервал:
Закладка:
Ученые установили, что отключение генов Piwi-белков приводит к резкому росту активности мобильных генетических элементов в сперматоцитах. Стало ясно, что система регуляции активности МГЭ при помощи Piwi-белков и пиРНК не является уникальной особенностью насекомых. Скорее всего, она широко распространена в живой природе.
Если считать МГЭ "эгоистическими" и чужеродными объектами, своеобразными геномными паразитами, то Piwi-белки и пиРНК можно было бы назвать системой "внутриклеточного иммунитета", в которой роль "антител" выполняют пиРНК. Если же считать МГЭ полноправными составными частями единого генома, эту систему правильнее будет поставить в один ряд с другими известными механизмами генной регуляции, которые обеспечивают своевременное включение и выключение различных участков генома в зависимости от потребностей организма.
В пользу второй интерпретации свидетельствует один чрезвычайно важный факт. Оказалось, что набор пиРНК, производимых сперматоцитами, меняется с возрастом, причем весьма резко. Существует два почти непересекающихся "комплекта" пиРНК. Один из них, "ранний", обнаруживается в семенниках мышат примерно до 12-14-дневного возраста. После этого начинают производиться совсем другие, "поздние" пиРНК. Свойством подавлять активность МГЭ обладают оба комплекта, и смысл перемены пока совершенно неясен. Так или иначе, все это больше похоже не на работу иммунной системы, а на генетическую регуляцию индивидуального развития. Хотя, конечно, для окончательных выводов у нас еще слишком мало данных.
Ученые также установили, что пиРНК могут влиять на активность МГЭ не только путем "программирования" Piwi- белков, но и другим способом — через механизм метилирования ДНК. Как мы помним, это один из важных способов регуляции активности генов. В общем случае чем сильнее метилирован ген, тем слабее он работает. Метилирование ДНК осуществляется специальными ферментами. Однако вопрос о том, откуда эти ферменты "узнают", какие гены надо метилировать, а какие не надо, пока еще далек от разрешения. На растениях ранее было показано, что определенную роль в этом могут играть маленькие молекулы РНК, которые каким-то образом "указывают" ферментам гены, подлежащие метилированию. Ранее также было установлено, что многие МГЭ у млекопитающих подвергаются усиленному метилированию — это еще один способ держать МГЭ под контролем. Исследователи решили проверить, влияет ли отключение системы Piwi-пиРНК на степень метилирования МГЭ в сперматоцитах мышей. Оказалось, да, влияет, причем весьма существенно. Возможно, это свидетельствует о том, что пиРНК и Piwi-белки каким-то образом направляют деятельность ферментов, ответственных за метилирование, на нужные участки генома. У насекомых в отличие от млекопитающих метилирование ДНК для регуляции работы генов почти не используется.
И у мух, и у мышей в работе системы Piwi-пиРНК используется принцип обратной связи. Дело в том, что те "обрезки", которые получаются из считанных с МГЭ молекул мРНК в результате деятельности Piwi-белков, сами могут функционировать в качестве пиРНК, то есть связываться с Piwi-белками и управлять их работой. Чем активнее МГЭ, тем больше с них считывается молекул мРНК. Это расширяет поле деятельности для Piwi-белков, которые режут эти мРНК на кусочки. Чем больше становится в клетке таких кусочков, функционирующих в качестве пиРНК, тем эффективнее действуют Piwi-белки и тем сильнее подавляется активность МГЭ.
Очевидно, что исследователи только начали проникать в некую совершенно новую, весьма необычную область. Пожалуй, единственный обоснованный вывод, который можно сделать, состоит в том, что поведение МГЭ не является бесконтрольным, что клетка имеет реальную возможность влиять на их деятельность. Учитывая, что МГЭ играют важнейшую роль в эволюции организмов и даже могут придавать ей отчасти направленный характер, получается, что организмы в принципе способны активно регулировать собственную эволюцию. Это еще один механизм управления наследственными изменениями из числа тех, о которых рассказано в главе "Управляемые мутации".
Взаимное узнавание
Множество захватывающих тайн в биологии связано со способами взаимного узнавания на уровне молекул, клеток и организмов. Как одна молекула находит другую в безумной химической круговерти цитоплазмы? Как транскрипционный фактор находит среди миллиардов нуклеотидов ДНК тот единственный и неповторимый участок, к которому он должен прикрепиться? Откуда знают растущие нервные клетки, в какую сторону им необходимо выпустить отросток и с какой клеткой вступить в контакт? Как удается самцу насекомого безошибочно найти по запаху самку своего вида, особенно если концентрация химического сигнала в воздухе близка к нулю? Как ухитряется самка рыбки колюшки опять-таки по запаху выбрать себе в мужья такого самца, который приходится ей одновременно и не слишком близкой, и не слишком дальней родней?
Тема эта необозримо велика, и мы ее до сих пор почти не затрагивали. Не удастся нам подробно раскрыть ее и в этой последней главе. Но о двух удивительных и тесно взаимосвязанных открытиях я все-таки расскажу. Одно из них имеет отношение к иммунитету, другое — к формированию нервной системы в ходе индивидуального развития. Казалось бы, какая тут связь? Самая прямая: в обоих случаях главным действующим лицом оказался один и тот же белок из надсемейства иммуноглобулинов. И белок этот сам по себе заслуживает того, чтобы о нем рассказать. Известный в биологических кругах афоризм гласит: тот, кто не видел кораллового рифа, не зоолог. Примерно то же и здесь: кто не слышал о белке DSCAM, едва ли может представить себе, на что способны белки. Но начнем по порядку.
Первое открытие связано с иммунной системой насекомых (Yuemei Dong, Harry Е. Taylor, George Dimopoulos. AgDscam, a Hypervariable Immunoglobulin Domain-Containing Receptor of the Anopheles gambiae Innate Immune System // PLoS Biology. 2006. V 4. Issue 7.). Как мы помним, основная обязанность иммунной системы — безошибочно распознавать любую попавшую в организм заразу, в том числе и такую, с которой раньше не приходилось встречаться. Для этого нужно иметь очень много разных белков, избирательно связывающихся с различными чужеродными веществами (антигенами). Позвоночные животные продуцируют сотни тысяч вариантов таких защитных белков — гораздо больше, чем генов в геноме. Высокое разнообразие защитных белков достигается благодаря прижизненным перестройкам генома в клетках иммунной системы — лимфоцитах. О том, как это происходит, говорилось в главе "Управляемые мутации", а здесь я только вкратце напомню самое основное.
В геноме "зародышевой линии", то есть в том геноме, который позвоночное животное получает от папы с мамой, нет генов антител как таковых, а есть наборы заготовок — несколько "кассет" похожих, но немного различающихся фрагментов будущего гена. В зреющем лимфоците специальные ферменты (потомки прирученных транспозонов — RAG-белки) режут и перекраивают геномную ДНК, чтобы собрать из этих заготовок один функциональный ген. При этом из каждой "кассеты", состоящей из десятков похожих фрагментов, случайным образом выбирается какой-то один. В разных лимфоцитах гены антител получаются разными, а общее число теоретически возможных вариантов у человека или мыши достигает трех миллионов. Приобретенный иммунитет формируется за счет того, что те лимфоциты, чьи антитела лучше других связываются с данным инфекционным агентом, усиленно размножаются, а гены их антител вдобавок еще и "подгоняются" к антигену за счет мутирования и дополнительного отбора.
Всего этого нет у беспозвоночных. Долгое время считалось, что беспозвоночным удается как-то обходиться одним лишь врожденным, неспецифическим иммунитетом и сравнительно небольшим числом иммунных белков — рецепторов, гены которых в "явном виде" присутствуют в геноме зародышевой линии и не подвергаются прижизненным перестройкам. Учитывая быструю эволюцию и вариабельность микроорганизмов, было довольно удивительно, каким образом беспозвоночные ухитряются при этом выжить.
Однако со временем открывалось все больше фактов, показывающих, что у беспозвоночных тоже формируется приобретенный иммунитет. Вот только как им это удается без прижизненных перестроек генов, оставалось неясным.
Иммунологи из Университета Джонса Гопкинса (США) обратили внимание на один весьма необычный ген, имеющийся и у позвоночных, и у насекомых. Этот ген называется DSCAM (Down syndrome cell adhesion molecule). Некоторые его мутации у человека ассоциированы с синдромом Дауна. У насекомых он, как было известно, отвечает за регуляцию роста нервных клеток, хотя как именно он это делает, никто не знал. Ген принадлежит к надсемейству иммуноглобулинов, то есть содержит иммуноглобулиновые домены (последовательности нуклеотидов, кодирующие участки белковой молекулы, предназначенные для избирательного связывания других молекул). Иммуноглобулиновые гены есть практически у всех животных. Они выполняют разнообразные рецепторные функции, далеко не всегда связанные с иммунной защитой. Например, тот же рост аксонов направляется определенными химическими сигналами, которые кто-то должен улавливать и распознавать.