- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
100 знаменитых изобретений - Владислав Пристинский
Шрифт:
Интервал:
Закладка:
Низкая надежность работы радиоустройств с большим количеством вакуумных электронных ламп в начале 20-х годов XX в. заставила вспомнить, что кристаллический детектор, подобный углесталистому детектору А. С. Попова, обладает не менее широкими возможностями, чем электронная лампа. В 1922 г. сотрудник Нижегородской радиолаборатории О. В. Лосев обнаружил возможность получения незатухающих колебаний с помощью полупроводникового кристаллического диода. Свой прибор Лосев назвал кристодином. На его основе ученый создал различные полупроводниковые усилители для радиоприемников.
Многие предрекали, что кристаллы со временем займут место вакуумных ламп. Но в 1920–1930-е гг. этого не произошло. Лампы удовлетворяли тогдашние запросы, постепенно раскрывались их новые достоинства и возможности.
А полупроводниковые кристаллы в то время лишь начали изучать, технологи не имели возможности производить чистые, лишенные примесей кристаллы. Многие годы физики исследовали процессы, протекающие в полупроводниках на уровне микроструктуры, и на основе этих исследований пытались объяснять их свойства. Оказалось, что так же, как и в изоляторах, в полупроводниках все электроны прочно связаны с атомами. Но эта связь непрочна, и при нагреве или под действием света некоторым электронам удается вырваться из притяжения атомов. С появлением свободных электронов электрическая проводимость полупроводников резко возрастает.
В отличие от проводников, носителями тока в полупроводниках могут быть не только электроны, но и «дырки» – места на орбите положительно заряженных частиц – ионов, образовавшихся после потери электрона. Положительный заряд этих частиц стремится захватить недостающий электрон у одного из соседних атомов. Таким образом, «дырка» путешествует по полупроводнику, переходя от атома к атому. Вместе с ней путешествует и положительный заряд, равный по значению отрицательному заряду электрона.
Один и тот же полупроводник может обладать либо электронной, либо дырочной проводимостью. Все зависит от химического состава введенных в него примесей. Так, небольшая добавка в германий примесей, богатых электронами, например мышьяка или сурьмы, позволяет получить полупроводник с электронной проводимостью, так называемый полупроводник n-типа (от лат. negativus – отрицательный). Добавка же алюминия, галлия или индия приводит к избытку «дырок» и образованию дырочной проводимости. Такие проводники называются проводниками р-типа (от лат. positivus – положительный).
Развитие полупроводников в 20–30-е гг. прошлого века позволило создать полупроводниковые приборы, термоэлектрогенераторы, сегнетоэлектрические и фотоэлектрические приборы.
В 1929 г. советский ученый А. Ф. Иоффе высказал мысль о возможности получения с помощью термоэлектрического генератора из полупроводников электроэнергии с КПД в 2,5–4 %. Уже в 1940–1941 гг. в Советском Союзе были получены полупроводниковые термоэлементы с КПД в 3 %.
Во второй половине 20-х гг. XX в. были созданы твердые выпрямители переменного тока, представлявшие собой окисленную медную пластинку. Позже их стали делать из селена. Серьезным недостатком первых твердых выпрямителей были большие тепловые потери. Использование новых веществ, в частности германия, позволило резко их снизить. Были созданы опытные образцы выпрямителей переменного тока из германия и аналогичных полупроводниковых материалов с КПД до 98–99 %. Полупроводниковые выпрямители удобны в эксплуатации, поскольку они миниатюрны и прочны, не требуют тока накала, потребляют немного энергии и долговечны.
Изучение свойств кристаллов показало, что выпрямление и детектирование тока происходит не на границе кристалла и металла, а вследствие образования на поверхности кристалла оксидной пленки. Для выпрямления было необходимо, чтобы пленка также обладала полупроводниковыми свойствами. Причем ее проводимость должна была отличаться от проводимости самого кристалла: если кристалл обладал n-проводимостью, то пленка должна иметь р-проводимость – и наоборот. В этом случае кристалл и пленка образуют полупроводниковый вентиль, пропускающий ток только в одну сторону.
Постепенно ученые научились получать чистые кристаллы кремния и германия, добавляя затем в них нужные примеси, создающие необходимый тип проводимости.
В начале Второй мировой войны для обеспечения приема и выпрямления сантиметровых волн в США для радиолокации стали примяться германиевые и кремниевые детекторы, обладавшие большой устойчивостью. Вскоре после войны были разработаны полупроводниковые усилители и генераторы.
1 июля 1948 г. в газете «Нью-Йорк тайме» появилась заметка о демонстрации фирмой «Белл телефон лабораториз» прибора под названием «транзистор». Он представлял собой полупроводниковый триод, несколько напоминавший по конструкции кристаллические детекторы 20-х годов. Транзистор создали физики Дж. Бардин и У. Браттейн. Его устройство было простым: на поверхности пластинки из германия, с одним общим электродом-основанием, были помещены два близко расположенных металлических стержня, один из которых был включен в пропускном, а другой – в запорном направлении. При этом пластинка обладала р-проводимостью, а стержни – n-проводимостью. Концентрация случайных примесей в пластинке германия не превышала 10_6 %.
В 1951 г. У. Шокли создал первый плоскостной триод, в котором контакт между зонами с п– и р-проводимостью осуществлялся по всей торцовой поверхности кристаллов. У него, как и у точечного транзистора, был предшественник. В свое время радиолюбители, чтобы избавиться от необходимости искать необходимую точку на кристаллическом детекторе, решили перейти к плоскостным контактам, создав плоскостной диод. В нем использовались кристаллы цинкита и халькопирита. Но он обладал малой надежностью, поскольку из-за плохой поверхности окислов выпрямление осуществлялось лишь в отдельных точках.
В 1956 г. Бардин, Браттейн и Шокли были удостоены Нобелевской премии по физике за исследования полупроводников и открытие транзисторного эффекта.
Надежно работающие плоскостные полупроводниковые диоды и триоды были созданы только после изучения свойств полупроводниковых кристаллов и овладения технологией изготовления сверхчистых материалов.
Преимуществом плоскостных контактов по сравнению с точечными является их способность пропускать более сильный ток. Но при этом они имеют значительно большую паразитную емкость, вред которой возрастает с повышением частоты сигналов.
Поэтому плоскостные диоды и триоды применяются для обработки и усиления низкочастотных сигналов, а точечные, называемые также кристаллическими детекторами, для детектирования слабых сигналов высоких и сверхвысоких частот.
Область применения полупроводников не ограничивалась радиотехникой. Еще в 1932 г. А. Ф. Иоффе создал из закиси меди, а затем из селена фотоэлементы, вырабатывавшие при их освещении электрический ток без помощи внешних источников энергии. Однако их КПД при использовании солнечной энергии не превышал 0,05–0,1 %. Но уже перед Великой Отечественной войной в СССР были созданы фотоэлементы из сернистого таллия и сернистого серебра с КПД до 1 %.
В 1954 г. был создан кремниевый фотоэлемент. В этом же году впервые была построена солнечная батарея, состоявшая из большого числа кремниевых фотоэлементов. В начале 1955 г. были созданы фотоэлементы с КПД до 6 %. Современные фотоэлементы имеют КПД до 20 % и выше.
Располагая полупроводниковый диод рядом с радиоактивным материалом, получают атомную батарею, которая может вырабатывать электрическую энергию на протяжении многих лет.
На основе полупроводников были созданы фотодиоды. В сочетании с электрическими счетчиками они ведут учет движущихся объектов – от производимых деталей до пассажиров в метро. Приборы, созданные с применением фотодиодов, могут определять бракованные изделия на конвейере и выключать оборудование, если в его опасную зону попадают руки рабочих.
Создание приборов на основе полупроводников произвело в середине XX в. техническую революцию. Дальнейшее их развитие привело к созданию интегральных микросхем, появлению новых поколений электронно-вычислительных машин и персональных компьютеров. Сейчас ни одна область науки и техники не обходится без их применения.
Порох
Время и место изобретения пороха сейчас точно установить невозможно. Считается, что он был изобретен в Китае, и долгое время его использовали только для фейерверков.
Кто и как догадался соединить вместе три основных компонента дымного пороха и поджечь, неизвестно. Некоторые исследователи утверждают, что порох был получен как побочный продукт при изготовлении «пилюли бессмертия» китайскими даосами – представителями религиозно-мистического течения.

