Категории
Самые читаемые
Лучшие книги » Компьютеры и Интернет » Интернет » Электронные издания - Владимир Вуль

Электронные издания - Владимир Вуль

Читать онлайн Электронные издания - Владимир Вуль

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 77 78 79 80 81 82 83 84 85 ... 118
Перейти на страницу:

i = log2(n/m). (8.1)

С учетом инверсной частоты вес или значимость термина в каждом документе определится выражением

z = f × i/S, (8.2)

где z – вес или значимость термина в издании; f – частота повторения термина в этом издании; i – инверсная частота этого термина в группе издании; S – количество значащих слов в определенном издании. Кстати, вес или значимость одного и того же термина в различных изданиях обычно существенно отличается друг от друга. Роль инверсной частоты в приведенной формуле состоит в том, чтобы уменьшить вес слов и устойчивых словосочетаний, которые выполняют вспомогательные функции в документе, обеспечивая стиль и определенный характер повествования. Для случайных слов и сочетаний мала частота повторения терминов f, а для стоп-слов и вспомогательных понятий стремится к нулю инверсная частота i. Таким образом, вес или значимость термина z позволяет выделить именно ключевые слова и сочетания. Этот же параметр позволяет также ранжировать значащие слова, т. е. построить их последовательность в порядке значимости.

Законы Зипфа используются при пополнении ссылочной базы данных на поисковых серверах, причем весовые коэффициенты основаны не только на весе каждого термина, но могут учитывать и то, какой частью речи является термин, а также его местоположение внутри документа, морфологические особенности и пр. Они же применяются для оценки релевантности найденного в процессе поиска документа, величина которой изменяется от 0 до 1. Релевантность оценивается на основе того, какое количество слов из представленных в поисковом выражении содержится в найденном документе, а также веса каждого из таких слов, представленных в документе.

Дж. Зипф представил свои законы в 1949 году. Позднее они были уточнены на основе ряда практических исследований известным математиком Бенуа Мандельбротом (Benoit Mandlebrot). В настоящее время именно эти законы легли в основу алгоритмов автоматического распознавания текста и различных автоматических поисковых стратегий, некоторые из которых рассмотрены в данной книге.

8.3. Автоматизированный анализ текстовой информации с помощью программ-экстракторов

Мы уже несколько раз отмечали, что для любого осмысленного поиска в глобальной сети необходимо предварительно определить перечень ключевых слов, на основании которого затем формулируется запрос. Откуда взять такой текст-источник? Обычно имеется некая информация, на основе которой возник интерес к определенной проблеме. Это может быть научная статья, информационное сообщение, заметка или Web-страница. Если ничего из перечисленного не существует, то следует самому попытаться сформулировать задачу в виде небольшого текстового реферата.

Далее необходимо проанализировать текст-источник на предмет обнаружения в нем основных смысловых терминов или ключевых слов. Как было показано в предшествующем разделе, процесс определения веса или значимости термина в издании легко алгоритмизируется на основе законов Зипфа. Чтобы упростить себе задачу можно воспользоваться одной из простых программ, определяющих частоту, с которой каждое слово встречается в тексте. В частности, можно воспользоваться программой MTAS (файл mtasprog.exe), URL которой www.sas.upenn.edu/~bkat/dwnld.htm . Получив с помощью программы таблицу частот отдельных слов, выберем от 10 до 20 из них, частоты которых лежат посредине частотного диапазона. Если в список попадут отдельные слова, которые не могут трактоваться как термины, то в этом нет ничего плохого – в процессе поиска они могут оказаться полезными. По существу, вы вручную выполнили работу простой программы-экстрактора, т. е. осуществили синтаксический анализ текста и извлечение из него значащих слов и выражений. Также вручную, используя формулы (8.1) и (8.2), можно ранжировать извлеченные из текста ключевые слова и выражения, т. е. присвоить каждому из них определенный вес.

Естественно, что обработка небольших текстов, размеры которых не превышают половины страницы, может быть выполнена вручную по описанной выше методике. Однако для анализа больших работ желательно автоматизировать не только извлечение ключевых слов и выражений и их ранжирование, но и морфологический и синтаксический анализ текста. Именно для этой цели используются программы-экстракторы, рассмотрению которых посвящены три последующих раздела.

8.3.1. Извлечение значащих слов в редакторах MS Word

Для реализации указанной функции в редакторе Word используется команда Реферат в меню Сервис . Соответствующее команде диалоговое окно Автореферат показано на рис. 8.4.

Рис. 8.4. Диалоговое окно Автореферат

Как следует из данных рис. 8.4, реферат можно поместить в начало реферируемого документа или оформить в виде отдельного файла. Можно также регулировать размер реферата, задавая в процентах от основного текста количество предложений в нем. В примере выбрано значение 10%, вследствие чего в реферате содержатся 2 предложения, в то время как в исходном документе их было 21. Наряду с составлением реферата из текста документа извлекается 5 наиболее значимых слов. Для их просмотра следует воспользоваться командой Свойства меню Файл. Соответствующее диалоговое окно показано на рис. 8.5. Окно включает в себя 5 вкладок, из которых для нашей цели важна лишь одна – вкладка Документ, которая открыта на рис. 8.5.

Рис. 8.5. Интерфейс пакета MS Word 97 с открытым документом SOVR-IZD.DOC и диалоговым окном Свойства для этого документа с активной вкладкой Документ

Для того чтобы значимые или ключевые слова были занесены в нужное поле вкладки Документ диалогового окна Свойства , в нижней части предыдущего диалогового окна Автореферат (см. рис. 8.4), должен быть установлен флажок Обновить сведения о документе . В нашем примере в поле Ключевые слова представлено 5 слов, а именно: "в", "издательств", "области", "предусмотрен", "должен". Нетрудно заметить, что из пяти отобранных слов только одно соответствует тематике статьи "Современные издательства", причем одно из отобранных слов это предлог, который вообще не может иметь смысла, когда он берется отдельно от основного слова. Таким образом, качество отбора ключевых слов редактором Word 97 весьма низкое. Кстати, реферирование осуществляется только для работ с названием на английском (а не на русском) языке. Надо сказать, что редакторы Word 2000 и Word 2002 ничем существенным не отличаются от своего предшественника, т. е. опция Автореферат и автоматическое выделение ключевых слов с помощью этой опции работает для русскоязычного текста неудовлетворительно.

8.3.2. Выделение значащих слов в программе NRC Extractor

Выделение значащих или ключевых слов из изданий лучше выполнить с помощью специальных программ-экстракторов. Одна из первых таких программ и носит название Extractor . Она создана в Институте Информационных Технологий Национального исследовательского Совета (NRC) Канады. В настоящее время доступна версия 7.0 этой программы [40].

Рис. 8.6. Интерфейс программного пакета Extractor с результатами извлечения ключевых слов из документа extraktor1.txt

Extractor в качестве исходных данных использует текстовый документ, генерируя на выходе совокупность ключевых слов. Он обрабатывает тексты на английском, французском, японском, немецком, испанском и корейском языках. К сожалению, к русскому языку он пока не адаптирован. Алгоритм работы программы использует метод обучения на примерах. Алгоритм изначально предназначен для моделирования человеческого подхода к выбору ключевых слов. В большинстве случаев время работы программы с 10-страничным документом не превышает секунды. Пример интерфейса и результатов работы программы Extractor 7.0 с документом на английском языке представлен на рис. 8.6.

На рис. 8.6 представлен набор ключевых слов и выражений (Keyphrases) и основные фрагменты текста (Highlights). Ключевые слова в основных фрагментах текста (предложениях) автоматически выделяются жирным шрифтом, а наименее важные слова автоматически отображаются в серых (а не черных) тонах.

8.3.3. Семантический анализ текстов с помощью программы TextAnalyst

Разработанная фирмой Научно-производственный инновационный центр "МикроСистемы" отечественная программа-экстрактор TextAnalyst 1.5 позволяет на первых же этапах работы с текстами выделить основные термины и определить их вес и связи. Интерфейс и заставка программы представлены на рис. 8.7. Интересно отметить, что на американском рынке технологию TextAnalyst продвигает фирма Megaputer Intelligence Inc.

Демонстрационная версия этой программы доступна бесплатно на сайте фирмы. Применение программы резко сокращает время, необходимое эксперту для погружения в тематику, и дает множество подсказок и наводящих соображений для тонкого и углубленного анализа как всей информации в совокупности, так и отдельных ее фрагментов. Интересно отметить, что на одном из семинаров, где автор в числе прочего докладывал и об использовании данной программы в поисковых стратегиях, одним из слушателей был указан интересный аспект использования таких программ – для анализа текстов с целью определения их авторства.

1 ... 77 78 79 80 81 82 83 84 85 ... 118
Перейти на страницу:
На этой странице вы можете бесплатно скачать Электронные издания - Владимир Вуль торрент бесплатно.
Комментарии