Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Медицина » Полный справочник невропатолога. - С. Кочнева

Полный справочник невропатолога. - С. Кочнева

Читать онлайн Полный справочник невропатолога. - С. Кочнева

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 32
Перейти на страницу:

Таким образом, возбуждение включает локальный ответ, который не распространяется и быстро затухает, и волновой ответ, распространяющийся далее по волокнам.

Осуществляясь в соответствии с одинаковыми закономерностями, процессы проведения в миелиновых и безмиелиновых волокнах отличается рядом особенностей. В безмиелиновых волокнах импульс распространяется от возбужденного участка к соседним, расположенным рядом с ним. Распространение потенциала действия происходит в обе стороны без изменения амплитуды с помощью круговых токов.

Механизм распространения нервного возбуждения в миелино-вых волокнах происходит несколько иначе. Потенциал действия распространяется скачкообразно (сальтаторно); деполяризуются только участки истончения миелиновой оболочки – перехваты Ранвье (Б. Ф. Вериго, 1899 г.). Возбуждение распространяется с одного перехвата на соседний, минуя участки, покрытые плотным слоем миелина. Сальтаторное проведение имеет ряд преимуществ по сравнению с кабельным. Оно отличается большей эффективностью ввиду большого количества ионных натриевых каналов в перехватах – до 10000 на 1 кв. мкм мембраны. При повреждении миелинового нервного волокна нарушение проведения менее выражено, чем в безмиелиновых при аналогичных условиях. Это обусловлено тем, что «перепрыгивание» возможно не только на соседний перехват, но и минуя один или более. Это возможно благодаря тому, что амплитуда потенциала действия в перехвате примерно в пять раз больше необходимой для деполяризации другого перехвата.

Различная скорость проведения, продолжительность фаз потенциала действия, строение волокон позволяет подразделять их на 3 вида: А, В, С.

Волокна типа А – миелиновые, они, в свою очередь, подразделяются еще на 4 подгруппы: α-, β-, γ– и δ-волокна. Альфа-волокна, или, как их еще называют, А-а, среди этой группы имеют самый большой диаметр (12–22 мкм) и высокую скорость проведения импульса (70-120 м/с). В организме они достаточно распространены. К этой группе относятся двигательные и чувствительные волокна скелетной мускулатуры. Что касается длительности различных фаз потенциала действия, то продолжительность пика составляет 0,4–0,5 мс, следовой деполяризации – 15–20 мс, следовой гиперполяризации – 40–60 мс. Следующие подгруппы типа А – А-β, А-γ, А-δ – отличаются меньшим диаметром и скоростью проведения возбуждения, но их потенциал действия более продолжителен, чем А-α. Эти волокна участвуют в основном в проведении импульсов от различных рецепторов внутренних органов в нервные центры. А-β волокна идут от тактильных рецепторов, А-γ – от тактильных и барорецепторов, а также к мышечным веретенам как двигательные волокна. В А-δ подгруппу входят афферентные волокна, несущие импульс от термо-, барорецепторов и ноцицепторов. Проведение в трех последних подгруппах составляет 1-12 м/с. Самое быстрое проведение – в А-β волокнах. Пик потенциала действия может продолжаться до 0,9–1,0 мс, (наиболее длительное – в А-β волокнах). Следовая деполяризация и гиперполяризация продолжаются примерно в течение того же времени, что и в А-α.

Волокна типа В также покрыты миелиновой оболочкой, имеют достаточно низкую скорость проведения и находятся в составе вегетативных отделов нервной системы. В основном, это преганг-лионарные вегетативные волокна. Проведение осуществляется со скоростью от 3 до 18 м/с. Наряду с этим, в В-волокнах потенциал действия по длительности превосходит более чем в 3 раза это значение в А-волокнах. Важнейшим отличием является тот факт, что в этих волокнах не наблюдается фаза следовой гиперполяризации. Следовая гиперполяризация может продолжаться до 100 мс.

Волокна типа С по строению безмиелиновые, очень тонкие, всего 0,5–2,0 мкм в диаметре. Они также обнаруживаются в вегетативной нервной системе в составе постганглионарных волокон, осуществляя проведение от рецепторов тепла, холода, давления и боли. Эти волокна отличаются наиболее медленной скоростью проведения (не больше 3 м/с). Их потенциал действия отличается самой большой (по сравнению с другими типами) длительностью развития потенциала действия: у теплокровных животных и человека – до 2 мс.

Регенерация

Волокна способны существовать и выполнять свою функцию только тогда, когда они связаны с телом нейрона. Повреждение волокна ведет к нарушению или утрате способности проводить возбуждение. Перерезка ведет к гибели отсеченной части волокна. Однако волокна способны регенерировать за счет гипертрофии (эндорепродукции). Разрушение отделенного волокна и образование нового является сложным и длительным процессом и протекает в несколько последовательных стадий. После перерезки миелиновый слой перерождается в жировые капли. Леммо-циты осуществляют дегенерацию осевого цилиндра с помощью гидролитических ферментов лизосом. В результате на месте волокна остается цепь леммоцитов. Дальше начинается регенерация волокна. От места его отделение в ложе, образованной шваннов-скими клетками, начинает прорастать колба роста. Регенерация осуществляется с примерной скоростью 0,5–4,5 мм за сутки в зависимости от строения волокна и местоположения его в организме.

Рефлекторная дуга

Деятельности нервной системы присущ рефлекторный характер. Еще в XVII в. французский философ и математик Рене Декарт дал описание рефлекторному акту. Он отметил реакцию организма на раздражение и высказал предположение о существовании пути, по которому проходит нервное возбуждение. Сам термин «рефлекс» был выдвинут позже – в XVIII в. – чешским ученым Дж. Прохазкой (с латинского «рефлекс» – отраженное действие). В дальнейшем И. М. Сеченов в своей работе «Рефлексы головного мозга» доказал, что ответы нервной системы на различного рода раздражения протекают по рефлекторному механизму, т. е. все сознательные и бессознательные действия имеют рефлекторное происхождение. Под рефлексом понимается конкретная реакция организма на раздражитель внутренней среды либо поступивший извне с обязательным участием центральной нервной системы. Рефлексы принято называть функциональными единицами нервной деятельности.

Рефлексы поддаются классификации по различным критериям. Так, в зависимости от уровня замыкания дуги, т. е. по месту локализации рефлекторного центра, рефлексы подразделяют на спинальные (рефлекс замыкается в спинном мозге), бульбарные (рефлекторный центр – продолговатый мозг), мезэнцефальные (замыкание рефлекторной дуги осуществляется в среднем мозге), диэнцефальные и кортикальные рефлекторные центры находятся в конечном мозге и коре больших полушарий соответственно. По эффекторному признаку они бывают соматические, когда эфферентный путь рефлекса осуществляет двигательную иннервацию скелетной мускулатуры, и вегетативные, когда эффекторами являются внутренние органы. В зависимости от вида раздражаемых рецепторов рефлексы делят на экстероцептивные (если рецептор воспринимает информацию из внешней среды), проприо-цептивные (рефлекторная дуга начинается от рецепторов костно-мышечно-сухожильного аппарата) и интероцептивные (от рецепторов внутренних органов). Интероцептивные рефлексы, в свою очередь, подразделяются на висцеро-висцеральные (рефлекторная дуга связывает два внутренних органа), висцеро-мышечные (рецепторы находятся на мышечно-сухожильном аппарате, эффектор – внутренний орган) и висцеро-кутанные (рецепторы локализованы в коже, рабочие органы – внутренности). По Павлову, рефлексы делят на условные (выработанные в течение жизни, специфичные для каждого индивида) и безусловные (врожденные, видоспецифичные: пищевые, половые, оборонительно-двигательные, гомеостатические и др.).

Независимо от вида рефлекса его рефлекторная дуга содержит рецептор, афферентный путь, нервный центр, эфферентный путь, рабочий орган и обратную связь. Исключением являются аксон-рефлексы, рефлекторная дуга которого располагается в пределах одного нейрона: чувствительные отростки генерируют центростремительные импульсы, которые, проходя через тело нейрона, по аксону распространяются в центральную нервную систему, а по ответвлению аксона импульсы доходят уже до эффектора. Подобные рефлексы относят к функционированию метасимпатической нервной системы, через них, например, осуществляются механизмы регулирования тонуса сосудов и деятельности желез кожи.

Функцию восприятия раздражения и превращения его в энергию возбуждения выполняют рецепторы рефлекторных дуг. Ре-цепторная энергия возбуждения носит характер локального ответа, что имеет значение в градации возбуждения по силе.

Исходя из строения и происхождения рецепторов, их можно разделить на первично-чувствующие, вторично-чувствующие и свободные нервные окончания. У первых в качестве рецептора действует сам нейрон (развивается из нейроэпителия), т. е. между раздражителем и первым афферентным нейроном нет структур-посредников. Локальный ответ первично-чувствующих рецепторов – рецепторный потенциал – является и генераторным потенциалом, т. е. вызывающим возникновение потенциала действия на мембране афферентного волокна. К первично-чувствующим рецепторам относят зрительные, обонятельные, хемо– и ба-рорецепторы сердечно-сосудистой системы.

1 ... 4 5 6 7 8 9 10 11 12 ... 32
Перейти на страницу:
На этой странице вы можете бесплатно скачать Полный справочник невропатолога. - С. Кочнева торрент бесплатно.
Комментарии