Занимательные опыты и задачи по физике - Яков Перельман
Шрифт:
Интервал:
Закладка:
В этом случае большая площадь опоры так же выгодна технически, как малая площадь в случае иглы.
Из сказанного ясно, что острие прокалывает лишь благодаря незначительности площади, по которой распределяется действие силы. Совершенно по той же причине острый нож лучше режет, нежели тупой: сила сосредоточивается на меньшем пространстве.
Итак, заостренные предметы оттого хорошо колют и режут, что на их остриях и лезвиях сосредоточивается большие давление.
Наподобие Левиафана
Почему на простом табурете сидеть жестко, в то время как на стуле, тоже деревянном, нисколько не жестко? Почему мягко лежать в веревочном гамаке, который сплетен из довольно твердых шнурков? Почему не жестко лежать на проволочной сетке, устраиваемой в кроватях взамен пружинных матрасов?
Нетрудно догадаться. Сидение простого табурета плоско; наше тело соприкасается с ним лишь по небольшой поверхности, на которой и сосредоточивается вся тяжесть туловища. У стула же сиденье вогнутое; оно соприкасается с телом по большей поверхности; по этой поверхности и распределяется вес туловища: на единицу поверхности приходится меньший груз, меньшее давление.
Итак, все дело здесь в более равномерном распределении давления. Когда мы нежимся на мягкой постели, в ней образуются углубления, соответствующие неровностям нашего тела. Давление распределяется здесь по нижней поверхности тела довольно равномерно, так что на каждый квадратный сантиметр приходится всего несколько граммов. Неудивительно, что в этих условиях мы чувствуем себя хорошо.
Легко выразить это различие и в числах. Поверхность тела взрослого человека составляет около 2 кв. м, или 20000 кв. см. Допустим, что, когда мы лежим в постели, с ней соприкасается, опираясь на нее, приблизительно ¼ всей поверхности нашего тела, т. е. 0,5 кв. м, или 5000 кв. см. Вес же нашего тела – около 60 кг (в среднем), или 60000 г. Значит, на каждый квадратный сантиметр приходится всего 12 г. Когда же мы лежим на голых досках, то соприкасаемся с опорной плоскостью лишь в немногих маленьких участках, общей площадью в какую-нибудь сотню квадратных сантиметров. На каждый квадратный сантиметр приводится, следовательно, давление в полкилограмма, а не в десяток граммов. Разница заметная, и мы сразу ощущаем ее на своем теле, говоря, что нам «очень жестко».
Но даже на самом твердом ложе нам может быть вовсе не жестко, если давление распределяется равномерно на большую поверхность. Вообразите, что вы легли на мягкую глину и в ней отпечатались формы вашего тела. Покинув глину, оставьте ее сохнуть (высыхая, глина «садится» на 5–10 %, но предположим, что этого не происходит). Когда она сделается твердой как камень, сохранив оставленные вашим телом вдавленности, лягте на нее опять, заполнив собой эту каменную форму. Вы почувствуете себя, как на нежном пуховике, не ощущая жесткости, хотя лежите буквально на камне. Вы уподобитесь легендарному Левиафану, о котором читаем в стихотворении Ломоносова:
На острых камнях возлегаетИ твердость оных презираетДля крепости великих сил,Считая их за мягкий ил.
Но причина нашей нечувствительности к жесткости ложа будет не «крепость великих сил», а распределение веса тела на весьма большую опорную поверхность.
Глава третья
Сопротивление среды
Пуля и воздух
Что воздух мешает полету пули, знают все, но лишь немногие представляют себе ясно, насколько велико это тормозящее действие воздуха. Большинство людей склонно думать, что такая нежная среда, как воздух, которого мы обычно даже и не чувствуем, не может сколько-нибудь заметно мешать стремительному полету ружейной пули.
Рис. 28. Полет пули в пустоте и в воздухе. Большая дуга изображает путь, какой описала бы пуля, если бы не существовало атмосферы. Маленькая дуга слева – действительный путь пули в воздухе.
Но взгляните на рис. 28, и вы поймете, что воздух является для пули препятствием чрезвычайно серьезным. Большая дуга на этом чертеже изображает путь, который пролетела бы пуля, если бы не существовало атмосферы. Покинув ствол ружья (под углом 45°, с начальной скоростью 620 м/с), пуля описала бы огромную дугу в 10 км высотой; дальность полета пули составила бы почти 40 км. В действительности же пуля при указанных условиях описывает сравнительно небольшую дугу и дальность ее полета составляет 4 км. Изображенная на том же чертеже дуга эта почти незаметна рядом с первой; таков результат противодействия воздуха! Не будь воздуха, из винтовки можно было бы обстреливать неприятеля с расстояния 40 км, взметая свинцовый дождь на высоту 10 км!
Сверхдальняя стрельба
Обстреливать противника с расстояния в сотню и более километров впервые начала германская артиллерия к концу империалистической войны (1918 г.), когда успехи французской и английской авиации положили конец воздушным налетам немцев. Германский штаб избрал другой, артиллерийский, способ поражать столицу Франции, удаленную от фронта не менее чем на 110 км.
Способ этот был совершенно новый, никем еще не испытанный. Наткнулись на него немецкие артиллеристы случайно. При стрельбе из крупнокалиберной пушки под большим углом возвышения неожиданно обнаружилось, что вместо дальности в 20 км достигается дальность в 40 км.
Оказалось, что снаряд, посланный круто вверх с большой начальной скоростью, достигает тех высоких разреженных слоев атмосферы, где сопротивление воздуха весьма незначительно; в такой слабо сопротивляющейся среде снаряд пролетает значительную часть своего пути и затем круто опускается на землю. Рис. 29 наглядно показывает, как велико различие в путях снарядов при изменении угла возвышения.
Рис. 29. Как изменяется дальность полета снаряда с изменением угла наклона сверхдальнобойного орудия; при угле 1 снаряд падает в Р, при угле 2 – в Р' при угле же 3 дальность стрельбы сразу возрастает во много раз, так как снаряд залетает в слои разреженной атмосферы.
Это наблюдение и положено было немцами в основу проекта сверхдальнобойной пушки для обстрела Парижа с расстояния 115 км. Пушка была успешно изготовлена и в течение лета 1918 г. выпустила по Парижу свыше трехсот снарядов.
Вот что стало известно об этой пушке впоследствии. Это была огромная стальная труба в 34 м длиной и в целый метр толщиной; толщина стенок в казенной части 40 см. Весило орудие 750 тонн. Его 120-килограммовые снаряды имели метр в длину и 21 см в толщину. Для заряда употреблялось 150 кг пороха; развивалось давление в 5000 атмосфер, которое и выбрасывало снаряд с начальной скоростью 2000 м/с. Стрельба велась под углом возвышения 52°; снаряд описывал огромную дугу, высшая точка которой лежала на уровне 40 км над землей, т. е. далеко в стратосфере. Свой путь от позиции до Парижа – 115 км – снаряд проделывал в 3,5 минуты, из которых 2 минуты он летел в стратосфере.
Такова была первая сверхдальнобойная пушка, прародительница современной сверхдальнобойной артиллерии.
Чем больше начальная скорость пули (или снаряда), тем сопротивление воздуха значительнее: оно возрастает не пропорционально скорости, а быстрее, пропорционально второй и более высокой степени скорости, в зависимости от величины этой скорости.
Почему взлетает бумажный змей?
Пытались ли вы объяснить себе, почему бумажный змей взлетает вверх, когда его тянут за бечевку вперед?
Если вы сможете ответить на этот вопрос, вы поймете также, почему летит аэроплан, почему носятся по воздуху семена клена и даже отчасти уясните себе причины странных движений бумеранга. Все это – явления одного порядка. Тот самый воздух, который составляет столь серьезное препятствие для полета пуль и снарядов, обусловливает полет не только легкого плода клена или бумажного змея, но и тяжелого самолета с десятками пассажиров.
Рис. 30. Какие сипы действуют на бумажный змей?
Чтобы объяснить поднятие бумажного змея, придется прибегнуть к упрощенному чертежу. Пусть линия MN (рис. 30) изображает у нас разрез змея. Когда, запуская змей, мы тянем его за шнур, он движется из-за тяжести хвоста в наклонном положении. Пусть это движение совершается справа налево. Обозначим угол наклона плоскости змея к горизонту через а. Рассмотрим, какие силы действуют на змей при этом движении. Воздух, конечно, должен мешать его движению, оказывать на змей некоторое давление. Это давление изображено на рис. 30 в виде стрелки ОС; так как воздух давит всегда перпендикулярно к плоскости, то линия ОС начерчена под прямым углом к MN. Силу ОС можно разложить на две, построив так называемый параллелограмм сил; получим вместо силы ОС две силы, OD и ОР. Из них сила OD толкает наш змей назад и, следовательно, уменьшает первоначальную его скорость. Другая же сила, ОР, увлекает аппарат вверх; она уменьшает его вес и, если достаточно велика, может преодолеть вес змея и поднять его. Вот почему змей поднимается вверх, когда мы тянем его за веревочку вперед.