- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Другая история науки. От Аристотеля до Ньютона - Сергей Валянский
Шрифт:
Интервал:
Закладка:
Однако о математической стороне подобных высказываний и исследований почти ничего не известно. Гораздо больше известно о возражениях противников этих идей. Мы имеем в виду апории Зенона, те логические парадоксы, к которым приводят попытки получать непрерывные величины из бесконечного множества бесконечно малых частиц.
Среди апорий наиболее известны:
а) дихотомия, то есть невозможность осуществить движение, так как путь может быть делим до бесконечности (пополам, еще раз пополам и т. д.) и поэтому надо последовательно преодолевать бесконечное множество участков пути;
б) Ахиллес, который не может догнать черепаху, так как ему надо последовательно достигать тех мест, где только что находилась черепаха, тем самым исчерпывать бесконечную последовательность отрезков пути;
в) полет стрелы делается невозможным, если время считать суммой дискретных мгновений, а пространство — суммой дискретных точек.
Апории Зенона показывали, что, если искать точные доказательства и логически исчерпывающие решения задач, нельзя пользоваться бесконечностью, опираясь на наивные атомистические соображения. Для подобных целей необходимо разрабатывать и привлекать методы, содержащие наряду с разновидностями суждений о бесконечно малых элементы предельного перехода.
Одним из самых ранних методов такого рода является метод исчерпывания. Изобретение его обычно приписывают Евдоксу, а примеры употребления находятся в двенадцатой книге «Начал» Евклида и в ряде сочинений Архимеда. Метод исчерпывания применялся при вычислении площадей фигур, объемов тел, длин кривых линий, нахождении подкасательных к кривым и т. п.
Однако метод был еще весьма несовершенным; и он развивался только в связи с конкретными задачами. Он не приобрел вида абстрактного метода, имеющего развитую систему исходных понятий и единообразные алгоритмы. Единственность предела доказывалась для всякой задачи заново. Этот недостаток не был частным, случайным. Дело в том, что всякая попытка ввести доказательство раз и навсегда для определенного, достаточно широкого класса задач, неизбежно влекла за собой необходимость дать рациональное объяснение понятию бесконечно близкого приближения, бесконечно малой величины и т. п. Трудностей, связанных с этим, математики того времени не могли преодолеть.
Тем не менее, метод исчерпывания лежал в основе многих конкретных достижений античных математиков, в первую очередь приписываемых Архимеду. До нас дошли десять сравнительно крупных и несколько мелких его сочинений математического характера, написанных преимущественно в виде писем. Основной их особенностью является применение строгих математических методов к разработке экспериментально-теоретического материала из области механики и физики. И вот, в соответствии с научной традицией своего времени Архимед переводил доказательства, полученные методом механической аналогии, на общепринятый язык метода исчерпывания с обязательным завершением последнего, в каждом отдельном случае, доказательством от противного.
Следующей разновидностью методов бесконечно малых является метод, который можно охарактеризованным как метод интегральных сумм. Наиболее яркие примеры применения этого метода находятся в сочинениях Архимеда: «О шаре и цилиндре», «О спиралях», «О коноидах и сфероидах». Сущность этого метода в применении, например, к вычислению объемов тел вращения, состоит в следующем: тело вращения разбивается на части и каждая часть аппроксимируется описанным и вписанным телами, объемы которых можно вычислить. Сумма объемов описанных тел будет больше, а сумма вписанных тел — меньше объема тела вращения. Теперь остается выбрать аппроксимирующие сверху и снизу тела таким образом, чтобы разность их объемов могла быть сделана сколь угодно малой. Это достигается выбором в качестве указанных тел соответствующих цилиндриков. Единственность предела доказывается, как и во всех других случаях, приведением к противоречию.
Может показаться, что методы интегральных сумм древних и определенного интегрирования имеет много общего. Это происходит оттого, что мы излагаем его современным языком. Но это не так.
Метод интегральных сумм древних опирается на интуитивное, строго не определенное понятие площади и не использует арифметико-алгебраического аппарата. В нем не введены и не определены необходимые общие понятия: предела, интеграла, бесконечной суммы, и не изучены условия применимости высказываемых теорем. Словом, метод применяется индивидуально для каждой конкретной задачи без выделения и оформления его общетеоретических основ.
Наряду с методом интегральных сумм в математике были разработаны и другие, которые ретроспективно могут быть оценены как дифференциальные методы. Примером может служить метод нахождения касательной к спирали в сочинении Архимеда «О спиралях».
Но широкое использование этот метод получил значительно позже, когда в XVI–XVII веках Паскаль, Барроу и Лейбниц создавали свое исчисление дифференциалов. Поэтому не исключено, что работы Архимеда имеют даже существенно более позднее происхождение, чем мы можем предположить. Ведь они послужили исходным пунктом многих исследований ученых-математиков XVI и XVII веков. Лейбниц, один из основателей математического анализа, по этому поводу писал: «Изучая труды Архимеда, перестаешь удивляться успехам современных математиков».
Вернемся к коническим сечениям. Интерес к ним возрастал по мере увеличения количества решаемых с их помощью задач. Свойства конических сечений стали предметом специального теоретического исследования; им был посвящен ряд сочинений. Однако, подобно тому, как это имело место и с «Началами» Евклида, все эти сочинения были забыты, когда появился труд александрийцы Аполлония «Конические сечения».
Первые четыре книги этого труда сохранились на греческом языке, следующие три в арабском переводе, а последняя книга утеряна. Апполоний первым ввел эллипс, параболу и гиперболу как произвольные плоские сечения произвольных конусов с круговым основанием и детально исследовал их свойства. Метод Апполония состоял в отнесении кривой к какому-либо ее диаметру и сопряженным с ним хордам, и предвосхищал созданный в XVII веке метод координат. «Конические сечения» Апполония оказали огромное влияние на развитие наук Нового времени — астрономии, механики, оптики. Из положений Апполония исходили при создании аналитической геометрии Декарт (1596–1650) и Ферма (1601–1655).
Мы видим, что большинство математических теорий до какого-то времени имело своим предметом геометрические объекты. Дело в том, что геометрические величины представлялись имеющими преимущество наибольшей общности в классе математических величин. Хотя, разумеется, нет оснований утверждать, что геометрические формы исчерпывали всю совокупность форм математической деятельности. Греки Византии в практической области применяли большой комплекс арифметико-вычислительных методов. Этот комплекс проникал и в теоретические работы, дополняя теорию арифметико-алгебраическими и теоретико-числовыми элементами.
Но неудобства алфавитной системы счисления и неразработанность символов мешали развитию вычислительных операций. Да и требования практики не были достаточными, чтобы стимулировать операции с весьма большими числами. Вслед за сравнительно ограниченным набором чисел, имеющих названия, довольно быстро наступал порог, после которого число элементов практически представлялось неисчислимым.
Чтобы устранить подобное несовершенство и показать неограниченную продолжаемость натурального ряда чисел, Архимед написал специальное сочинение под названием «Псаммит» (исчисление песка), в котором показывается, что система чисел может быть продолжена сколь угодно далеко и может служить для пересчета любого конечного множества предметов.
Система чисел Архимеда построена по десятичному принципу: единицы (монады), десятки (декады), сотни (гекады), тысячи (хилиады), десятки тысяч (мириады) и т. д. Мириада затем рассматривается как основа счета до числа мириады мириад (10^8). Числа от 1 до 10^8 образуют первую октаду (от слова восемь), а числа, в нее входящие, называются первыми. Далее следуют вторая октада, третья и т. д., до октады чисел октадных, замыкающей первый период. Она является исходной единицей второго периода, далее следуют единицы чисел третьего периода, четвертого и так до октады чисел октадных октадного периода.
Получающиеся огромные числа воспринимались как своеобразные бесконечности, шкала роста которых могла быть неограниченно продолжаема. Их с избытком хватало даже для такой задачи, как определение порядка числа песчинок, могущих полностью заполнить всю Вселенную.

