- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
ВОЛШЕБНЫЙ ДВУРОГ - Сергей Бобров
Шрифт:
Интервал:
Закладка:
Немедленно тончайшая ртутная ниточка сложилась втрое и быстро двинулась направо.
Действительно, когда она добралась до абсциссы "три", она стала той длины, какой в этом месте была ордината гиперболы.
- 368 -
- Ясно, - сказал Илюша.
- А далее, - спросил Радикс, - если взять еще одну тончайшую полоску, которая будет стоять рядом с первой, то с ней что будет?
- Я не могу сообразить сразу, как это будет, - отвечал мальчик, - но мне кажется, что если бы мы взяли целый полк тончайших полосок и стали их так перемещать...
Площадь.
- А ведь когда я перемещал целый трапецоид, я именно это и делал! - заметил Радикс.
- Ах да! - спохватился Илюша. - Разумеется. Но я уж буду пока по-своему рассуждать Итак, ты перемещаешь, скажем, две полоски, они стоят рядом... а стало быть, если первая, сложившись втрое, попадет в абсциссу "три", то ведь и вторая полоска очутится на расстоянии втрое более дальнем, а следовательно, и ей придется сложиться опять-таки втрое. А если это так, то очевидно, что и любая (то есть третья, четвертая, пятая и так далее) полоска тоже должна будет потолстеть при таком перемещении ровно втрое. А тогда и все они вместе, то есть вся площадь трапецоида, тоже должны будут стать втрое толще. И теперь понятно, почему ртуть заняла площадь от "трех" до "шести" по абсциссе.
- Превосходно! - ответствовал Радикс- Ну, а скажи мне, что будет, если я возьму площадку от икса, равного единице, до икса, равного некоторому n, и перенесу ее опять направо, так, чтобы ее начало совпадало с иксом, равным какому-то m?
- 369 -
- Придется растянуть всю эту площадку в m раз. И она тогда займет расстояние по абсциссе от m до mn.
- Итак, - продолжал Радикс, - допустим теперь, что я возьму одну площадочку от "один" по абсциссе до "два".
И теперь я хочу к ней пристроить сбоку, справа, еще одну точно такую же, то есть удвоить мою площадку. Затем, когда я пристрою вторую, я захочу пристроить третью, снова той же самой величины, то есть утроить первоначальную площадку.
Затем пристрою четвертую, пятую и так далее. И все они должны быть равновеликими. Ну, что из этого получится?
Илюша задумался на минутку, а потом сказал так:
- А может, мне снова поможет наше рассуждение со ртутью? Если трапецоид перенести от абсциссы "один" к абсциссе "два", то ясно, что он растянется вдвое. Следовательно, и вторая пристраиваемая площадочка будет длинней по абсциссе, то есть продолжится от абсциссы "два" до абсциссы "четыре". Третья пристраиваемая площадка будет вдвое длиннее второй и займет место до абсциссы "восемь", а четвертая - вдвое длинней третьей, пятая - вдвое против четвертой и так далее. Значит, если начинать всегда от абсциссы "один" и брать первоначальную площадку, кончающуюся у абсциссы "два", то площадка, вдвое большая по площади, кончится у абсциссы "четыре", вчетверо большая по площади - у абсциссы "шестнадцать", впятеро большая - у абсциссы "тридцать два", и так далее, и так далее. Да ведь это выходит геометрическая прогрессия, раз каждая площадка вдвое длинней по абсциссе. Вот в чем дело! Площади в арифметической прогрессии, конечные абсциссы - в геометрической.
- Тебе ясно, какая у гиперболы связь с логарифмами?
- Да, - ответил Илюша.
- Если последовательно рассматривать абсциссы "два", "четыре", "восемь", "шестнадцать", "тридцать два"... идущие в геометрической прогрессии, и вычислять площади соответствующих гиперболических трапеций, начинающихся от абсциссы х = 1, причем единицей для измерения площадей будет площадь первой гиперболической трапеции от х = 1 до х = 2, то эти площади будут идти в арифметической прогрессии, то есть как показатели степеней числа "два", в которые надо возвести это основание, чтобы получить конечные абсциссы "два", "четыре", "восемь", "шестнадцать" и так далее. Поэтому можно сказать, что площадь каждой трапеции, измеренная указанным образом, будет равна логарифму конечной абсциссы при основании "два". Только мне не совсем понятно, почему мы взяли за единицу для измерения площадей именно эту первую гиперболическую площадку?
- 370 -
Ведь за единицу для площадей принимают обыкновенно площадь квадрата со стороной, равной единице длины. Не проще ли и тут взять то же самое?
- Тогда как раз и получишь логарифмы, называемые натуральными, неперовыми, или гиперболическими. Ты можешь повторить все наше рассуждение, но только за начальную площадку придется выбрать гиперболическую .трапецию, простирающуюся от абсциссы х = 1 на такое расстояние направо, насколько это нужно, чтобы под гиперболой получилась площадка, равновеликая квадрату со стороной "один". Ты заметишь по чертежу внизу, что такая начальная площадка должна доходить не до абсциссы х - 2, а немного дальше, приблизительно до 2,7. Эта конечная абсцисса обозначается буквой е и называется неперовым числом. Оно не менее знаменито, чем известное тебе число π.
Если провести вычисление с большей точностью, то можно обнаружить, что
е = 2,71828 18284 59045 23536 0287471135 26624 99757 54692 80835 55155 05841 72...
Теперь скажи мне: что нужно сделать, если ты захочешь получить вдвое большую площадь, то есть равную двум квадратным единицам?
- Здесь опять все пойдет в геометрической прогрессии, - отвечал Илюша. - Если нужно перенести единичную площадь направо, откладывая ее не от х=1, а от х=е, то надо все площадочки-неделимые втиснуть в промежуток в е раз более тесный и, следовательно, расширять во столько же раз их основания.
Значит, я дойду до абсциссы е • е = е2. Дальше будет то же самое. Когда я дойду от х = е до абсциссы х = еn, наберется площадь, равная n.
- Значит, - сказал Радикс, - числа, измеряющие величины гиперболических трапеций в обычной единице меры, будут...
Логарифмами конечных абсцисс при основании е, - отвечал Илюша. - Так это ведь и есть натуральные логарифмы?
Точки А и В лежат на кругах, но которым вписанные шары соприкасаются с конусом. Ясно, что ВА есть величина постоянная? А ну-ка, докажи это равенство!
F1P + F2P = BP + РА = ВА
Кто сам докажет, того переводим без экзаменов в следующую схолию. F1 и F2- фокусы.
- 371 -
- Вот именно. И заметь, что это рассуждение дает нам в руки способ вычисления этих логарифмов для любых положительных чисел, что далеко не так просто сделать, если искать нужный показатель степени. Потому что вычислять с дробными степенями, как ты сам, вероятно, не раз замечал, не так уж весело. Здесь же можно просто отложить абсциссу, равную числу N, логарифм которого тебе нужен, и измерить площадь гиперболической трапеции от х = 1 до х = N.
- Но это уже будет геометрический способ. А потом как же быть с большими числами?
- На миллиметровой бумаге можно добиться довольно большой точности, а для больших чисел придется уже вычислять. Вспомни, как мы вычисляли площадь, ограниченную дугой параболы. Ты ведь и здесь можешь разбить интересующий тебя участок на большое число частей и вычислить (а не измерять непосредственно) сумму площадей соответствующих тоненьких прямоугольников. Это уже можно сделать с любой степенью точности, то есть той, какая понадобится.
Но есть и более удобные способы вычисления логарифмов.
- А какие же логарифмы применяются на самом деле, -спросил Илюша, - натуральные или какие-нибудь другие?
- Натуральные обладают целым рядом преимуществ перед остальными, и в математическом анализе применяются почти исключительно они. Но в практических вычислениях удобнее иметь дело с десятичными, для которых и составлены таблицы.
А если надо перейти от десятичных к натуральным или наоборот, то пользуются модулем перехода, о котором мы уже говорили. Чтобы получить десятичный логарифм, надо натуральный умножить на
M = 0,43429 44809 032518 276511 289189 1660508 2294397 005803 7675761 1445378 ...
- 372 -
Это число называется модулем десятичных логарифмов.
- А нельзя ли десятичные логарифмы получить тоже как площади гиперболических трапеций?
- Конечно, можно. Перемена основания соответствует, как мы уже видели, просто перемене способа измерения площадей. Если ты в качестве единицы для измерения площадей выберешь основную гиперболическую трапецию, простирающуюся от х = 1 до х = 10, то как раз и получишь десятичные логарифмы. Так как единица измерения увеличилась, то площади будут выражаться меньшими числами, то есть десятичные логарифмы будут меньше натуральных, почему и модуль их меньше единицы.
- А почему обычные логарифмы - десятичные, а не какие-нибудь другие?
- Просто потому, что мы пользуемся десятеричной системой счисления.
Древний халдей, вероятно, выбрал бы для основания не десять, а свое любимое число шестьдесят, если бы он додумался до логарифмов. А в десятеричной системе счисления сразу известны логарифмы чисел 10, 100, 1 000, 10 000 и т. д. Они равны 1, 2, 3, 4... Поэтому, умножая какое-нибудь число на десять, сто и так далее, сразу можно сказать, что десятичный логарифм этого числа увеличится на единицу, на два и прочее, а при делении будет наоборот. Это очень облегчает пользование таблицами.

