Категории
Самые читаемые

Ракеты и полеты в космос - Вилли Лей

Читать онлайн Ракеты и полеты в космос - Вилли Лей

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 73 74 75 76 77 78 79 80 81 ... 92
Перейти на страницу:

В схеме Лорэна мы имеем своего рода реактивный двигатель, использующий энергию быстрой струи выхлопных газов с малой массой. Лорэн не понимал, почему этот двигатель должен уступать поршневому двигателю с винтом, создающим «струю» с большой массой, но малой скоростью. Только спустя несколько лет инженеры начали понимать действительную причину — глубокую разницу между скоростью истечения газов и скоростью самолета.

Имелось два способа сокращения этой разницы: увеличение скорости самолета и снижение скорости истечения газов. Оба способа, примененные одновременно, вероятно, привели бы к полному устранению разницы.

В 1917 году француз Мориз предложил проект двигательной установки для самолетов, которая, как предполагалось, позволяла соединить планер с реактивным двигателем. С помощью компрессора, приводимого в действие двигателем, топливных форсунок и камеры сгорания с выхлопным соплом Мориз сумел получить реактивную струю. Дополнением к его двигателю являлась форсажная камера — устройство, замедляющее скорость реактивной струи, но увеличивающее ее массу. Осуществить свою идею на практике Мориз, однако, не сумел. Это сделал за него его соотечественник инженер Мело.

Мело отказался от большей части оборудования Мориза, а вместо этого взял два цилиндра и соединил их открытыми концами друг с другом. На каждом конце этой двухцилиндровой сборки имелись отверстия для подачи топлива и запальные свечи. Внутри помещался свободный поршень без шатуна, двигавшийся взад и вперед для создания компрессии. Выхлоп осуществлялся через отводные трубки в общую «буферную камеру», к которой крепилось реактивное сопло. В результате создавалась пульсирующая реактивная струя, которая затем также пропускалась через форсажную камеру.Мело не только описал свой проект[54], но и построил по нему действующий двигатель. Правда, его было трудно запускать, но работал он исправно. После того как были накоплены необходимые опытные данные, Мело рассчитал, что двух больших двигателей такого рода будет достаточно, чтобы поднять обычный для того времени самолет. Он вел эксперименты в течение многих лет, но, кажется, успеха не имел. Да и не было в ту пору особых причин для замены хорошо известного и постоянно совершенствуемого двигателя внутреннего сгорания новым и недостаточно испытанным устройством. Самолеты, летавшие со скоростью 160—200 км/час, не нуждались в двигателе нового типа, который в дальнейшем оказался лучше всяких других.

Вплоть до Мело история создания ракетных самолетов шла общим путем, от изобретателя к изобретателю, от проекта к проекту, от одного теоретического усовершенствования к другому. Но дальше это развитие пошло разными дорогами главным образом из-за стремления изобретателей как-то повысить коэффициент полезного действия новых двигателей. Одни пытались достичь этого за счет максимального увеличения скорости, рассматривая ракету как самостоятельное средство передвижения, другие брали за основу любую приемлемую скорость и, подобно Мело, стремились приспособить ракету к самолету, а не наоборот. Последний путь привел к тому, что сейчас широко известно под названием реактивного ускорения старта.

Рассмотрим теперь некоторые отличительные и сходные моменты в действии ракетного и воздушно-реактивного двигателей. Оба они основаны на использовании третьего закона Ньютона. Разница состоит только в том, что воздушно-реактивный двигатель является таким ракетным двигателем, который в качестве окислителя расходует кислород окружающего воздуха. Вследствие этого воздушно-реактивный двигатель конструктивно довольно сложен и к тому же ограничен в отношении высоты, на которой он может применяться. Ракетный же двигатель в свою очередь может быть назван упрощенным реактивным двигателем, который несет кислород (окислитель) с собой и поэтому не ограничен высотой применения.

Большой промежуток времени между опытами Опеля и современными работами над самолетами с ракетными двигателями интересен, вероятно, только деятельностью австрийского инженера доктора Зенгера. Он, несомненно, был одним из первых конструкторов подобных самолетов, который решал задачи не вслепую, а на серьезной научной основе. Зенгер начал карьеру специалиста-ракетчика с широкой серии испытаний ракетных двигателей в лабораториях Венского университета. Эти испытания были весьма успешными. Зенгер в то время работал главным образом с одной моделью — сферической камерой сгорания диаметром около 50 мм. Сопло двигателя было необычайно длинным (25 см), причем диаметр среза сопла равнялся диаметру камеры сгорания. Камера сгорания и примыкающая к ней часть сопла были снабжены рубашкой охлаждения (рис. 77), в которую под большим давлением подавалось топливо. Топливо в рубашке охлаждения выполняло две функции: охлаждало камеру сгорания и компенсировало давление, создаваемое в ней продуктами сгорания. В рубашке охлаждения возникало своего рода противодавление, поэтому она фактически испытывала основное напряжение и, следовательно, должна была иметь более толстые стенки, чем сама камера сгорания.

Рис. 77. Экспериментальный ракетный двигатель Зенгера.

В качестве горючего Зенгер использовал летучие продукты нефти; впрыск производился насосами такого типа, которые применяются в дизельных двигателях. Давление впрыска колебалось в пределах 30—150 атм, но было всегда более высоким, чем принятое в «Ракетенфлюгплатц» и в Пенемюнде. Кислород подавался непосредственно в камеру сгорания под давлением; но вместо жидкого кислорода Зенгер использовал газообразный, подаваемый непосредственно из обычного стального баллона, имевшего редукционные клапаны.

Небольшой ракетный двигатель подвешивался к каркасу из стальных труб, который мог перемещаться только в горизонтальном направлении, сжимая пружинное устройство замера тяги.

Время работы двигателей Зенгера было необычно большим. Испытание продолжительностью 15 минут являлось для него вполне нормальным. Многие двигатели работали в течение 20 минут, а один — в течение получаса. Двигатели развивали тягу порядка 25 кг, при этом скорость истечения составляла, как правило, 2000—3500 м/сек. Зенгер еще тогда был уверен — и дальнейшее развитие ракетной техники подтвердило правильность его взглядов, - что проблемы создания более крупных ракетных двигателей практически вполне разрешимы.

Следующим шагом исследователей была разработка технических требований, предъявляемых к конструкции ракетного самолета. Оберт, работавший в свое время над этой проблемой, указывал, что самолет с ракетным двигателем может обладать большим радиусом действия, если он будет взлетать почти вертикально, выравниваться на большой высоте, развивать максимальную скорость за счет использования всего топлива в возможно короткое время и в дальнейшем переходить на скоростное планирование. Зенгер пришел примерно к тем же выводам, но он решал проблему в основном с точки зрения конструктора самолета. Он высказался в защиту наклонного старта под углом 30°, но в остальном его метод был таким же, как у Оберта. Приняв время горения равным 20 минутам, он рассчитал, что общее полетное время ракетного самолета составит несколько более одного часа, а средняя скорость—2500 км/час. На рис. 78 показана примерная схема самолета Зенгера. Он весьма похож на первую схему американского экспериментального самолета Х-1.

Рис. 78. Эскиз стратосферного ракетного самолета Зенгера.

Доктор Зенгер не имел ничего общего с ракетными самолетами, построенными или проектировавшимися немцами во время второй мировой войны, такими, как «Мессершмитт» Ме-163В («Комета»), самолет-разведчик DFS-228 или разведывательный вариант двухдвигательного бомбардировщика DFS-346, способного теоретически подняться на 30 км и развить скорость 2700 км/час. На всех этих самолетах были установлены ракетные двигатели, разработанные на заводе Вальтера в Киле. Как уже говорилось, впервые в Германии перекись водорода высокой концентрации была получена в промышленных масштабах в 1936 году. В некоторых двигателях Вальтера она использовалась в качестве окислителя с определенным топливом; эти двигатели получили название «горячих». В других двигателях 80—83% перекись водорода служила источником энергии, получаемой в результате ее каталитического разложения; эти двигатели стали называться «холодными».

Первым ракетным двигателем Вальтера для самолетов был двигатель R.I., прошедший летные испытания в 1937 году на самолете «Хейнкель», на котором был оставлен и обычный поршневой двигатель. На испытаниях двигатель создавал тягу около 350 кг при секундном расходе топлива порядка 3,3 кг.

В том же году министерство авиации Германии обратилось к Липпишу с просьбой спроектировать скоростной истребитель, при этом ему была указана только мощность двигателя, который должен был быть установлен на самолете. Проект, разработанный Липпишем, условно обозначался DFS-194 — по начальным буквам названия немецкого научно-исследовательского института безмоторного полета Deutsche Porschungsanstalt fiir Segelflug (нем)., где Липпиш проработал много лет.

1 ... 73 74 75 76 77 78 79 80 81 ... 92
Перейти на страницу:
На этой странице вы можете бесплатно скачать Ракеты и полеты в космос - Вилли Лей торрент бесплатно.
Комментарии