- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Занимательная электроника - Юрий Ревич
Шрифт:
Интервал:
Закладка:
Итак, в качестве исходных данных у нас имеется некий набор значений xi в количестве n штук. Надо провести кривую, соответствующую уравнению (5), так, чтобы сумма квадратов отклонений была минимальна:
(6)
Какой степени полином должен быть? Из элементарной геометрии известно, что через две точки можно провести прямую (полином первой степени), через три — параболу (второй степени) и т. д., т. е. максимально возможная степень полинома на единицу меньше, чем число экспериментальных данных. Однако через две точки можно провести только одну прямую, и мы никогда не сможем оценить погрешностей — т. е. узнать, насколько наша прямая отличается от того, что имеет место в действительности. Поэтому чем избыток точек больше, тем лучше (в идеале необходимы те же 15–20 точек, но на практике для линейной зависимости можно обойтись и тремя-пятью точками). Оптимальную же степень определяют так: строят несколько полиномов разной степени и смотрят на среднеквадратическое отклонение. Когда оно с увеличением степени полинома перестанет уменьшаться (или это уменьшение незначительно), то нужная степень достигнута.
Я не буду здесь вдаваться в подробности реализации метода наименьших квадратов — это бессмысленно, т. к. его обычно реализуют в виде готовой программы. Такую программу под названием RegrStat вы можете скачать с моей домашней странички по адресу http://revich.lib.ru из раздела Программы. Умеет строить простейшие регрессионные зависимости и Microsoft Excel, причем в том числе и как функцию от многих переменных, но только первого порядка (линейные полиномы). Ну, и конечно, существует множество специальных программных пакетов для этой цели.
Разновидности погрешностейМы в предыдущем изложении часто упоминали понятие погрешности, приводя его то в процентах, то в абсолютных величинах. Систематизируем эти представления и определим следующие три вида погрешностей:
□ абсолютная погрешность — в единицах измеряемой величины;
□ относительная погрешность — абсолютная, но выраженная в процентах от значения измеряемой величины;
□ относительная приведенная погрешность — абсолютная, но выраженная в процентах либо долях от всего диапазона измерений.
Последняя величина, если она соответствует стандартному ряду (например, 1,0; 0,75; 0,5; 0,25; 0,1 и т. п.), еще называется классом точности и обычно указывается в технических описаниях приборов.
При определении относительной приведенной погрешности учитывают все ошибки (их абсолютные значения): и случайную, и аддитивную, и мультипликативную погрешности. Причем в последнем случае за величину погрешности принимают значение мультипликативной погрешности в конце шкалы — ведь она зависит от измеряемой величины. Отсюда видно, что если мультипликативная погрешность доминирует, то выгоднее как можно больше «ужимать» диапазон измеряемых значений. С другой стороны, аддитивная и случайная погрешности от диапазона не зависят, и уменьшение его приведет к тому, что их вклад увеличится, — в частности, именно поэтому мы старались в схеме на рис. 13.4 «раздуть» выходное напряжение ОУ до максимума, ограничивая максимальный ток значением резистора R7, а не величиной напряжения.
Теперь мы можем грамотно ответить на вопрос, поставленный в начале раздела: если погрешность мультиметра на пределе 2 В составляет 0,5 %, то любое показываемое им значение на этом пределе (в том числе указанное нами ранее значение 1,000 В) отклонится от истинного значения не более, чем на ±10 мВ в 95 случаях из ста. А теперь оставим эти скучные материи и перейдем к куда более интересным вещам — к логическим микросхемам и цифровой электронике.
Часть III. ЦИФРОВОЙ ВЕК
ГЛАВА 14
На пороге цифрового века
Математическая логика и ее представление в технических устройствах
— Теперь давайте сочтем, сколько у нас всего. Портос?
— Тридцать экю.
— Арамис?
— Десять пистолей.
— У вас, Д'Артаньян?
— Двадцать пять.
— Сколько это всего? — спросил Атос.
— Четыреста семьдесят пять ливров! — сказал д'Артаньян, считавший, как Архимед.
А. Дюма. Три мушкетера
Все началось, конечно, с Аристотеля, который жил в IV веке до нашей эры. Когда читаешь вступление к любой популярной книге, посвященной чему угодно: от изящных искусств до биологии, химии, физики и математики, — возникает впечатление, что Аристотель был каким-то сверхчеловеком. В самом деле, гении встречаются, но нельзя же быть гением настолько, чтобы разработать основы вообще всего, на чем зиждется современная цивилизация! Тем не менее, и авторы не врут, и Аристотель сверхчеловеком не был. Во-первых, знаний было тогда накоплено еще не очень много, и обозреть их все — задача вполне посильная для человека острого ума и выдающихся способностей. Во-вторых, Аристотель работал не один, его метод — коллективный мозговой штурм, это просто история донесла до нас фактически одно только его имя.
Но главное, пожалуй, в другом — древние рассматривали упомянутые нами дисциплины во взаимосвязи. Аристотель четко разделил только науку и ремесла («техно», по-гречески), наука же делились на практические (этику и политику) и теоретические (физику и логику) дисциплины, но и они рассматривались как составные части единой науки. В чем древние, конечно, были более правы, чем мы, вынужденно поделившие области человеческой деятельности на множество автономных разделов.
Для нас важно, что главной составной частью науки считалась именно логика — искусство рассуждения. Вот она-то и послужила той основой, из которой выросла цифровая техника и все многообразие информационных технологий, которые окружают нас теперь на каждом шагу.
Выдвинутые Аристотелем законы логики, которые с его же подачи стали идентифицироваться с законами мышления вообще, неоднократно пытались привести в математическую форму. Некто Луллий в XIII веке попытался даже механизировать процесс логических рассуждений, построив «Всеобщий решатель задач» (несомненно, это была первая попытка построения «думающей машины»). Формализацией логики занимался Лейбниц, искавший универсальный язык науки, и в конце концов все сошлось в двух работах английского математика Джорджа Буля, который жил и работал уже в середине XIX века. Любопытно название второй из этих работ — «Исследование законов мышления», первая же работа называлась поскромнее, но без «мышления» и тут не обошлось, — в названии фигурировало слово «рассуждения». То есть и сам Буль, и еще сто лет после него, до середины XX века, и все его предшественники в течение двух с большим лишком тысяч лет, прошедших со времен Аристотеля, — никто так и не усомнился, что в основе мышления лежит именно та логика, которая называется «аристотелевой». И лишь в XX веке, после работ Геделя и Тьюринга, и особенно в связи с благополучно провалившимися (как и у Луллия за 700 лет до того) попытками создания «искусственного интеллекта», до ученых, наконец, начало доходить, что мышление вовсе не имеет логической природы, а логика есть лишь удобный способ сделать свои рассуждения доступными окружающим.
Главное же следствие возникновения математической логики выявилось совсем не в исследованиях мышления, где оно виделось Лейбницу и Булю. Его обозначил в своей магистерской диссертации от 1940 года великий Клод Шеннон (рис. 14.1) — оказалось, что булевы законы в точности совпадают с принципами функционирования релейных электрических схем. Что самое поразительное — все компоненты, необходимые для моделирования законов логики с помощью электрических устройств (реле, выключатели), были известны еще до публикации Булем своих работ, но в течение еще почти ста лет никто не обращал на это внимания (Шеннон скромно утверждал, что случилось так, что до него просто никто не владел математикой и электротехникой одновременно). Не обратил на это внимание даже Чарльз Бэббидж, сконструировавший еще задолго до работ Буля механическую вычислительную («аналитическую») машину, — а ведь был знаком и с самим Булем, и с его работами!
Рис. 14.1. Клод Элвуд Шеннон (Claude Elwood Shannon), 1916–2001
Фото Lucent Technologies Inc /Bell Labs
Основные операции алгебры БуляБулева алгебра имеет дело с абстрактными логическими переменными. Эти переменные можно интерпретировать по-разному, но интерпретацию мы пока отложим.
Вне зависимости от интерпретации, для логических переменных определены некоторые операции, подчиняющиеся определенным правилам. Базовые операции такие:

