- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская энциклопедия (РЕ) - БСЭ
Шрифт:
Интервал:
Закладка:
М. Я. Шульман.
Резнатрон
Резнатро'н [англ. resnatron, от resonator — резонатор и (elec)tron — (элек)трон], лучевой тетрод, в котором электроды являются частью резонаторов, образующих входную и выходную колебательные системы. Конструктивно Р. выполнен в виде массивной разборной металлической лампы с водяным охлаждением и с непрерывной откачкой газов из объёма лампы. Резонаторами служат 2 отрезка коаксиальных линий, открытые на одном конце и короткозамкнутые на другом. Изменением длины этих линий достигается изменение собственной частоты резонаторов. Р. выпускались и применялись в 40—50-е гг. 20 в. для усиления и генерирования мощных колебаний (до 85 квт в непрерывном и до нескольких сотен квт в импульсном режиме в дециметровом диапазоне); впоследствии заменены более совершенными тетродами (см. Металлокерамические лампы).
Лит.: Власов В. Ф., Электронные и ионные приборы, 3 изд., М., 1960.
Резолы
Резо'лы, резольные смолы, термореактивные продукты поликонденсации фенолов с альдегидами (главным образом формальдегидом) невысокой молекулярной массы (400—1000). Р. — вязкие жидкости или твёрдые продукты от светло-жёлтого до чёрного цвета. Содержат в макромолекулах реакционноспособные метилольные (—СН2ОН) группы. См. Феноло-альдегидные смолы.
Резольвента
Резольве'нта (лат. resolvens, родительный падеж resolventis — развязывающий, решающий, от resolvo — развязываю, решаю) (математическая), разрешающее уравнение, разрешающая функция (ядро) или разрешающие операторы.
В алгебре термин «Р.» употребляется в нескольких смыслах. Так, под Р. алгебраического уравнения f(x) = 0 степени n понимают такое алгебраическое уравнение g(x) = 0 с коэффициентами, рационально зависящими от коэффициентов f(x), что знание корней этого уравнения позволяет найти корни данного уравнения f(x) = 0 в результате решения более простых уравнений, степеней не больших n. Например, уравнение
является одной из (кубической) Р. уравнения четвёртой степени
x4 + a1x3 + a2x2 + a3x + a4 = 0. (1)
Если u1, u2, u3 — корни этой Р., то корни x1, x2, x3, x4 уравнения (1) могут быть найдены решением квадратных уравнений s2 — uks + a4 = 0, k = 1, 2, 3. Именно, если xk, hk — корни этих квадратных уравнений, то x1x2 = x1, x3x4 = h1, x1x3 = x2, x2x4 = h2, x1x4 = x3, x2x3 = h3 и x12 = x1x2/h3 и т. д. Резольвентой Галуа уравнения f(x) = 0 называется такое неприводимое над данным полем алгебраическое уравнение g(x) = 0 (см. Галуа теория), что в результате присоединения одного из его корней к этому полю получается поле, содержащее все корни уравнения f(x) = 0.
В несколько ином смысле термин «Р.» употребляется в т. н. проблеме резольвент Гильберта и Чеботарева.
В теории интегральных уравнений под Р. (разрешающим ядром) уравнения
(2)
понимают функцию Г(х, t, l) переменных s, t и параметра l, при помощи которой решение уравнения (2) представляют в виде
,
если l не есть собственное значение уравнения (2), например для ядра К(s, t) = s + t резольвентой является функция
G (s, t; l) =
В теории линейных операторов под Р. оператора А понимают семейство операторов Rl = (А — lE)-1, где комплексный параметр l принимает любые значения, не принадлежащие спектру оператора А.
Резольвометр
Резольво'метр (от лат. resolvo — развязываю, вскрываю, распутываю и ...метр), прибор для измерения разрешающей способности (РС) фотоматериалов. Наиболее распространены проекционные Р., в которых на фотоматериал через микроскопический объектив при обратном ходе лучей света проецируют уменьшенные изображения штриховой миры (обычно с П-образным распределением яркости вдоль решётки). Ряд таких изображений, полученных при различных строго отмеренных экспозициях, образует на фотоматериале резольвограмму; РС материала и её зависимость от экспозиции определяют, рассматривая поля резольвограммы под микроскопом. Измеренное значение РС зависит от апертуры объектива, достигая наибольшей величины при апертурах ~ 0,2—0,3; поэтому объективы проекционных Р. имеют определённые апертуры. Контраст фотографический изображений миры в проекционном Р. уменьшается с увеличением частоты её штрихов. Напротив, в интерференционных Р., применяемых для исследования особо высокоразрешающих материалов (например, используемых в голографии), контраст не зависит от частоты интерференционных полос, запечатлеваемых в фотослое: их яркость меняется вдоль решётки синусоидально. Пространственную частоту полос можно менять перемещениями оптических деталей создающего интерференционную картину интерферометра.
Лит. см. при ст. Разрешающая способность фотографирующей системы.
М. Я. Шульман.
Резолюция
Резолю'ция (от лат. resolutio — решение), 1) решение, принятое в результате обсуждения какого-либо вопроса на заседании (съезде, конференции, сессии) коллегиального органа, собрания и т. п. 2) Надпись на документе, сделанная должностным лицом и содержащая принятое им решение.
Резон
Резонёр (франц. raisonneur, от raisonner — рассуждать) (устаревшее), сценическое амплуа: актёр, исполняющий роли рассудочных людей, склонных к риторическим декларациям, назидательным сентенциям. Р. обычно высказывает мысли автора по поводу изображаемых событий, даёт моральные оценки поступкам других действующих лиц. Наибольшее распространение роли Р. получили в европейском театре 17—18 вв. (Клеант — «Тартюф» Мольера, Стародум — «Недоросль» Фонвизина, и др.).
Резонанс
Резона'нс (франц. resonance, от лат. resono — звучу в ответ, откликаюсь), явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы. В простейших случаях Р. наступает при приближении частоты внешнего воздействия к одной из тех частот, с которыми происходят собственные колебания в системе, возникающие в результате начального толчка. Характер явления Р. существенно зависит от свойств колебательной системы. Наиболее просто Р. протекает в тех случаях, когда периодическому воздействию подвергается система с параметрами, не зависящими от состояния самой системы (т. н. линейные системы).
Типичные черты Р. можно выяснить, рассматривая случай гармонического воздействия на систему с одной степенью свободы: например, на массу m, подвешенную на пружине, находящуюся под действием гармонической силы F = F0 coswt (рис. 1), или электрическую цепь, состоящую из последовательно соединённых индуктивности L, ёмкости С, сопротивления R и источника электродвижущей силы Е, меняющейся по гармоническому закону (рис. 2). Для определенности в дальнейшем рассматривается первая из этих моделей, но всё сказанное ниже можно распространить и на вторую модель. Примем, что пружина подчиняется закону Гука (это предположение необходимо, чтобы система была линейна), т. е., что сила, действующая со стороны пружины на массу m, равна kx, где х — смещение массы от положения равновесия, k — коэффициент упругости (сила тяжести для простоты не принимается во внимание). Далее, пусть при движении масса испытывает со стороны окружающей среды сопротивление, пропорциональное её скорости и коэффициенту трения b, т. е. равное k (это необходимо, чтобы система оставалась линейной). Тогда уравнение движения массы m при наличии гармонической внешней силы F имеет вид: