- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Вязовский
Шрифт:
Интервал:
Закладка:
Оно носит название уравнения Брэгга.
Кристалл, как мы уже сказали, можно разбить на системы плоскостей бесконечным числом способов. Но эффективной для отражения (теперь вам понятен смысл этих слова, не правда ли?) окажется лишь система плоскостей с таким межплскостным расстоянием и ориентированная так по отношению к падающему лучу, чтобы выполнялось уравнение Брэгга.
Если падающий луч монохроматический (то есть электромагнитная волна имеет одну определенную длину), то при произвольном положении кристалла по отношению к лучу отражение может и не произойти (вернее, суммарный эффект множества отражений может оказаться нулевым). Однако, поворачивая кристалл,
мы можем по очереди привести в отражающее положение различные системы плоскостей. Именно такой способ работы и оказался на практике наиболее подходящим.
Из уравнения Брэгга (уравнение (2)) следует, что для заданной длины волны существует минимальное значение расстояния d между плоскостями, при котором возможно селективное отражение. Это расстояние λ/2 (поскольку синус не может быть больше единицы). С другой стороны, из приведенной выше формулы межплоскостных расстояний (формула (1)) ясно, что наибольшим значениям d соответствуют самые малые значения h и k.
Большей частью при рентгеноструктурном анализе используется одна из длин волн характеристического излучения меди, а именно 1,54 ангстрема[132]. Тогда наименьшие межплоскостным расстояния, способные принять участие в создании дифракционной картины, равны 0,77 ангстрема. Располагая этими сведениями, можно оценить, сколько систем плоскостей дадут отражения, если известны периоды решетки а и Ь. Попробуйте решить эту задачу геометрически для а = 10 и Ь = 20 ангстремам.
Для этой цели надо провести окружность радиуса 1/λ в пространстве (в нашем двумерном случае — в плоскости) «обратной» решетки. И далее подсчитать число… (чего, догадайтесь). Но что такое «обратная» решетка и зачем нам понадобилось это новое понятие?
В нашем случае обратной решеткой называется решетка, ячейка которой есть прямоугольник со сторонами 1/а и 1/Ь. Как видите, прилагательное «обратная» вполне уместно. На рисунке 6 построена такая решетка.
…???…
Рис. 6
Выберем начало координат в каком-либо узле и проведем оси координат — одну перпендикулярно к оси кристалла, по которой период равен а, вторую перпендикулярно к оси с периодом Ь. Проведем теперь в этой решетке вектор (он так и называется: вектор обратной решетки), соединяющий начало отсчета с узлом обратной решетки, номер которого 10-й по одной оси, и 3-й по другой. Чему равна длина этого вектора? Возвратимся к уравнению (1) для межплоскостного расстояния и без труда и с интересом заметим, что длина вектора равна 1/d для системы плоскостей с h = 10 и k = 3.
Но этого мало. Легко доказать (докажите), что проведенный вектор обратной решетки перпендикулярен к системе плоскостей, для которых h =10, k = 3. И, конечно, это справедливо для любого узла номера h, k. А как будет обстоять дело, если номер узла содержит кратный множитель n? Ответ очевиден — в этом случае длина вектора обратной решетки будет равняться n/d.
Вот теперь мы располагаем всеми необходимыми сведениями для того, чтобы вернуться к опыту. В чем же состоит эксперимент? Кристалл устанавливается на специальный держатель так, чтобы одна из его осей (одно из ребер его элементарной ячейки) была вертикальной, и поворачивается около этой оси. Таким способом мы по очереди подставляем в «отражающее» положение все системы узловых плоскостей кристалла. Для того чтобы «поймать» отраженный луч, можно прибегнуть либо к фотографическом методу, либо использовать ионизационную камеру, счетчик Гейгера или иной прибор, регистрирующий ионизирующее излучение.
Сейчас, разумеется, все это делается автоматически, а в то время, когда пишущий эти строки начинал работать, процедура была такой. Устанавливался кристалл, затем приемник вторичного луча проворачивался во всем диапазоне улов. Глаз следил при этом за показывающим ток прибором. Потом кристалл поворачивался, скажем, на один градус, и далее эти действия повторялись до тех пор, пока мы не «натыкались» на отраженный луч. При этом, как ясно из рисунка 7, фиксировались два угла — значение брэгговского угла θ и положение нормали к отражающей плоскости (по отношению к какому-либо произвольному началу отсчета).
…???…
Рис. 7
Перед исследователем лежал лист бумаги, и он начинал строить обратную решетку. Откладывал положение нормали к отражающей плоскости и наносил на линию этой нормали значение n/d, которое однозначно определялось из уравнения Брэгга. Когда эта работа заканчивалась (в старое доброе время она занимала месяцы, а сейчас автоматический дифрактометр выполняет ее в сотни раз быстрее), физик обретал картину обратной решетки. Из ее ячейки он немедленно выяснял размеры ячейки кристалла, а каждому отражению мог приписать номер узла обратной решетки, а значит, индексы h и k и порядок отражения n.
Кроме того, исследователю известны интенсивности всех отражений. Таким образом, в его распоряжении имеются практически все сведения о структуре кристалла, всё, что касается характера строения молекулы из атомов и кристалла из молекул.
Теперь нам надо перейти от «пустой» решетки, состоящей из одних узлов, к решетке, начиненной атомами. На каких деталях дифракционной картины сказывается структура ячейки? Ответ окажется следующим: структура ячейки влияет на интенсивность отраженных лучей. Что же касается геометрии дифракционной картины, то она определяется только видом решетки. Атомы внутри ячейки не добавляют «лишних» отраженных лучей. В то же время вполне возможно, что структура ячейки заставит пропасть некоторые отражения — доведет их интенсивность до нуля.
Откуда следует такое заключение? Дело в том, что атомы внутри ячейки не создадут новых систем плоскостей. Узор атомов приведет лишь к возникновению «вставных» плоскостей. Взгляните, на рисунке 8 изображена та же решетка, что и на рисунке 4. Но теперь она не «пустая».
…???…
Рис. 8
Выберем опять предельно простой случай. Предположим, что реальная решетка построена из двухатомных молекул, а узел решетки был взят в центре такой молекулы. Реальная система плоскостей (для примера взят случай h = 2 и k = 1) будет выглядеть теперь, как и показано на рисунке 8. Отраженный луч пойдет в ту же сторону, брэгговский угол не изменится.
Покажем, что интенсивность отраженного луча будет зависеть от структуры ячейки — в данном случае от межатомного расстояния в молекуле и от угла, который образует ось молекулы с осью ячейки.
Интенсивность излучения пропорциональна квадрату амплитуды волны. Действительно, пусть в точке наблюдения поле, создаваемое решеткой атомов, записывается как A∙cos ωt. Интенсивность равна
Черточка сверху означает усреднение по времени (колебания происходят быстро, и опыт фиксирует средние значения). Но
(это несложно доказать). Поэтому интенсивность оказывается пропорциональной А2 — квадрату амплитуды волны.

