Краткая история почти всего на свете - Билл Брайсон
Шрифт:
Интервал:
Закладка:
В прессе того времени проблема представлялась так, будто достаточно кому-нибудь как следует встряхнуть колбы, и оттуда поползут живые существа. Как показало время, все обстоит далеко не так просто. Несмотря на полстолетия дальнейших исследований, мы сегодня не стали ближе к синтезу живых организмов, чем были в 1953 году, — и намного дальше от представлений, что нам это по силам. В настоящее время ученые довольно твердо убеждены, что ранняя атмосфера совсем не походила на ту, что Миллер с Юри приготовили для своего газированного бульона, и, скорее, была гораздо менее химически активной смесью азота и углекислого газа. Повторение опытов Миллера с этими менее удобными составляющими пока позволило получить только одну весьма несложную аминокислоту. Но в любом случае получение аминокислот — это еще не решение проблемы. Проблемой являются белки.
Белки получаются при соединении аминокислот, и их требуется очень много. Никто по-настоящему не знает, сколько, но в организме человека может находиться целый миллион видов белков, и каждый является маленьким чудом. По всем законам вероятности, белки не должны были бы существовать. Чтобы изготовить белок, требуется собрать аминокислоты (которые традиция предписывает мне обязательно назвать здесь «кирпичиками жизни») в определенном порядке, во многом подобно тому, как в определенном порядке собирают буквы, чтобы написать слово. Проблема в том, что слова, записанные аминокислотным алфавитом, зачастую бывают невероятно длинными. Чтобы записать слово «коллаген», название широко распространенного белка, требуется в определенном порядке расположить восемь букв. А чтобы создать коллаген, вам требуется соединить 1055 аминокислот в строго определенной последовательности.270 Однако — и здесь наступает очевидный, но решающий момент — создаете его не вы. Он создается сам, самопроизвольно, без руководящих указаний. Вот здесь-то и возникают невероятности.
Шансы самосборки молекулы, подобной коллагену, из соединенных в определенной последовательности 1055 элементов, откровенно говоря, равны нулю. Это просто не должно случиться. Чтобы осознать, насколько мало тут шансов на успех, представьте себе обычный игорный автомат типа «однорукий бандит», но значительно расширенный — если быть точным, примерно до 27 м, — чтобы вместить 1055 колес вместо обычных трех-четырех с двадцатью знаками на каждом (по одному на каждую из общеизвестных аминокислот)*.
-----------
* (Фактически, на Земле известны 22 встречающиеся в природе аминокислоты; возможно, ждут своего открытия и другие, однако 20 из них необходимы для создания нас и большинства других живых существ. Двадцать вторая аминокислота, названная пирролизином, была открыта в 2002 году исследователями из Университета штата Огайо и найдена только в одном виде архей (так называют одну из самых ранних форм животной и растительной жизни, о чем мы поговорим чуть ниже), носящем научное название Methanosarcina barkeri.)
Сколько времени вам придется дергать ручку, прежде чем все 1055 знаков выпадут в нужном порядке? Фактически вечно. Даже если вы сократите число колес до двухсот, что является более обычным количеством аминокислот в белке, вероятность выстраивания всех двухсот в предписанном порядке составит 1 к 10260 (т. е. к единице с 260 нулями), много больше числа всех атомов во Вселенной.
Словом, белки — это очень сложные вещества. Гемоглобин длиною всего в 146 аминокислот, по белковым меркам, — карлик, но и он предоставляет собой одну из 10190 возможных комбинаций аминокислот, потому химику из Кембриджского университета Максу Перутцу потребовалось 23 года — можно сказать, вся творческая жизнь, — чтобы расшифровать его строение. При случайном протекании процессов создание даже единственного белка должно было бы представляться совершенно невероятным — вроде пронесшегося над кладбищем старых автомобилей смерча, который оставил за собой собранный до последней гайки авиалайнер. Этим красочным сравнением мы обязаны астроному Фреду Хойлу.
Но речь ведь идет о нескольких сотнях тысяч видов белков, возможно, даже о миллионе, каждый из них уникален и каждый, насколько известно, имеет жизненно важное значение для того, чтобы вы были здоровы и счастливы. И это еще только начало. Чтобы от него была польза, белок должен не только соединять аминокислоты в должной последовательности, но и затем, занявшись своего рода химическим оригами, сложиться в строго определенную фигуру, подобно тому, как складывают фигурки из бумаги. Но даже одолев эту конструктивную сложность, белок будет для вас бесполезен, если он не сможет себя воспроизводить, а белки этого не умеют. Для этого требуется ДНК. Молекула ДНК владеет непревзойденным мастерством самовоспроизведения — она копирует себя за считанные секунды, — но не может практически ничего другого. Так что получается парадоксальная ситуация. Белки не могут существовать без ДНК, а ДНК без белков теряет свое назначение. Должны ли мы предположить, что они возникли одновременно ради того, чтобы поддерживать друг друга? Если так — это просто из ряда вон!
И это еще не все. ДНК, белки и другие компоненты жизни не могут благополучно существовать без особого рода оболочки, которая их содержит. Ни один атом или молекула не могут стать живыми сами по себе. Выдерните из своего тела любой атом, и он будет не живее песчинки. Только когда эти разнообразные вещества собираются вместе в питательной среде клетки, они могут принять участие в поразительном танце, называемом жизнью. Без клетки они не более чем интересные химические соединения. Но без этих соединений клетка теряет смысл. Как пишет Дэвис: «Если каждому элементу требуются все прочие, как тогда вообще в первый раз возникло это сообщество молекул?» Пожалуй, похоже на то, как если бы все продукты у вас на кухне каким-то образом собрались вместе и спеклись в пирог — к тому же в такой пирог, который по мере надобности выдает еще пирогов. Неудивительно, что мы называем это чудом жизни. И неудивительно, что мы едва начали это чудо постигать.
Так чем же объясняется вся эта поразительная сложность? Одна из возможностей состоит в том, что сложность на самом деле не настолько уж невообразимая, как это кажется поначалу. Взять хотя бы эти чудовищно маловероятные белки. Наше удивление по поводу их сборки возникает из предположения, что они предстали перед нами полностью сформировавшимися. А что, если белковые цепочки собирались не сразу? Что, если в великом игорном автомате творения некоторые из колес можно было придержать? Что, если, другими словами, белки не сразу появились на свет, а эволюционировали!
Представьте, что вы собрали все компоненты человеческого существа — углерод, водород, кислород и так далее, сложили их в сосуд с водой, хорошенько перемешали, и оттуда выходит готовый человек. Это было бы потрясающе. Но, по существу, именно об этом говорят Хойл и другие (включая многих рьяных креационистов), когда внушают мысль, будто белки образовались спонтанно, причем все сразу. Нет, так они не могут. Ричард Докинс271 в «Слепом часовщике» доказывает, что, должно быть, имел место своего рода кумулятивный процесс, давший возможность аминокислотам собираться в группы. Возможно, две или три аминокислоты соединялись с какой-нибудь простой целью, а потом со временем сталкивались с другим схожим пучком и «открывали» какое-то дополнительное улучшение.
Химические реакции вроде тех, что ассоциируются с жизнью, в сущности, довольно обычны. Нам, может быть, не по силам состряпать их в лаборатории в духе Стэнли Миллера и Гарольда Юри, но Вселенная делает это без особого труда. В природе множество молекул собираются вместе, образуя длинные цепочки, называемые полимерами. Сахара постоянно собираются вместе, образуя крахмалы. Кристаллам тоже свойствен ряд процессов, сходных с теми, что присущи жизни, — репликация, реакция на воздействие окружающей среды, способность принимать сложные узорчатые формы. Разумеется, сами они никогда не достигали жизни, но неоднократно демонстрировали, что сложность представляет собой естественное, самопроизвольное, вполне достоверное явление. Возможно, жизнь часто встречается во Вселенной, возможно, редко, но упорядоченной самосборки в ней вполне хватает — от ошеломительной симметрии снежинок до правильных колец Сатурна.
Эта естественная тенденция к собиранию вместе настолько сильна, что многие ученые ныне считают возникновение жизни куда более неизбежным явлением, чем мы обычно думаем. Говоря словами бельгийского биохимика, нобелевского лауреата Кристиана де Дюва,272 жизнь является «обязательным проявлением материи, непременно возникающим всюду где есть соответствующие условия». Де Дюв считал, что такие условия могут встречаться миллионы раз в каждой галактике.